Thcslytutrongst.edu.vn - Thông Tin Kiến Thức Bổ Ích

Giải Toán 9 Bài 2: Căn thức bậc hai và hằng đẳng thức Giải SGK Toán 9 Tập 1 (trang 10, 11, 12)

Tháng 9 21, 2023 by Thcslytutrongst.edu.vn

Bạn đang xem bài viết Giải Toán 9 Bài 2: Căn thức bậc hai và hằng đẳng thức Giải SGK Toán 9 Tập 1 (trang 10, 11, 12) tại Thcslytutrongst.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Giải Toán lớp 9 trang 10, 11, 12 tập 1 giúp các bạn học sinh có thêm nhiều gợi ý tham khảo để trả lời các câu hỏi và 11 bài tập trong SGK bài 2 Căn thức bậc hai và hằng đẳng thức.

Giải Toán 9 Bài 2 tập 1 Căn thức bậc hai và hằng đẳng thức được biên soạn với các lời giải chi tiết, đầy đủ và chính xác bám sát chương trình sách giáo khoa môn Toán. Giải Toán lớp 9 trang 10, 11, 12 là tài liệu cực kì hữu ích hỗ trợ các em học sinh trong quá trình giải bài tập. Đồng thời phụ huynh có thể sử dụng để hướng dẫn con em học tập và đổi mới phương pháp giải phù hợp hơn.

Mục Lục Bài Viết

  • Giải Giải Toán 9 Bài 2: Căn thức bậc hai và hằng đẳng thức
  • I. Trả lời câu hỏi trang 8 SGK Toán 9 tập 1
    • Câu 1
    • Câu 2
    • Câu 3
  • II. Giải bài tập toán 9 trang 10, 11, 12 tập 1
    • Bài 6 (trang 10 SGK Toán 9 Tập 1)
    • Bài 7 (trang 10 SGK Toán 9 Tập 1)
    • Bài 8 (trang 10 SGK Toán 9 Tập 1)
    • Bài 9 (trang 11 SGK Toán 9 Tập 1)
    • Bài 10 (trang 11 SGK Toán 9 Tập 1)
  • III. Giải bài tập toán 9 trang 11, 12 tập 1: Luyện tập
    • Bài 11 (trang 11 SGK Toán 9 Tập 1)
    • Bài 12 (trang 11 SGK Toán 9 Tập 1)
    • Bài 13 (trang 11 SGK Toán 9 Tập 1)
    • Bài 14 (trang 11 SGK Toán 9 Tập 1)
    • Bài 15 (trang 11 SGK Toán 9 Tập 1)
    • Bài 16 (trang 12 SGK Toán 9 Tập 1)
  • IV. Lý thuyết Căn thức bậc hai và hằng đẳng thức

Giải Giải Toán 9 Bài 2: Căn thức bậc hai và hằng đẳng thức

  • I. Trả lời câu hỏi trang 8 SGK Toán 9 tập 1
  • II. Giải bài tập toán 9 trang 10, 11, 12 tập 1
  • III. Giải bài tập toán 9 trang 11, 12 tập 1: Luyện tập
  • IV. Lý thuyết Căn thức bậc hai và hằng đẳng thức
Khám Phá Thêm:   Giáo án môn Trải nghiệm sáng tạo lớp 5 (Học kì I) Giáo án điện tử lớp 5

I. Trả lời câu hỏi trang 8 SGK Toán 9 tập 1

Câu 1

Hình chữ nhật ABCD có đường chéo AC = 5cm và cạnh BC = x (cm) thì cạnh Giải Toán 9 Bài 2: Căn thức bậc hai và hằng đẳng thức Giải SGK Toán 9 Tập 1 (trang 10, 11, 12). Vì sao? (h.2)

Hướng dẫn giải:

Áp dụng định lí Pi – ta – go vào tam giác ABC vuông tại B có:

eqalign{& A{B^2} + B{C^2} = A{C^2} Leftrightarrow A{B^2} + {x^2} = {5^2}  cr &  Leftrightarrow A{B^2} = 25 - {x^2}  cr &  Rightarrow AB = sqrt {left( {25 - {x^2}} right)} ,,,left( {do,,AB > 0} right) cr}

Câu 2

Với giá trị nào của x thì sqrt {5 - 2x} xác định?

Hướng dẫn giải:

Điều kiện để căn thức sqrt {5 - 2x} xác định (có nghĩa) là:

5 - 2x geqslant 0 Leftrightarrow 2x leqslant 5 Leftrightarrow x leqslant frac{5}{2}

Câu 3

Điền số thích hợp vào ô trống trong bảng sau:

Hướng dẫn giải:

a

-2

-1

0

2

3

a2

4

1

0

4

9

√ a 2

2

1

0

2

3

II. Giải bài tập toán 9 trang 10, 11, 12 tập 1

Bài 6 (trang 10 SGK Toán 9 Tập 1)

Với giá trị nào của a thì mỗi căn thức sau có nghĩa:

a) sqrt{dfrac{a}{3}},

b) sqrt{-5a};

c) sqrt{4 - a};

d) sqrt{3a + 7}

Gợi ý đáp án

a) Ta có:sqrt{dfrac{a}{3}} có nghĩa khi dfrac{a}{3}geq 0Leftrightarrow ageq 0

b) Ta có: sqrt{-5a} có nghĩa khi -5ageq 0Leftrightarrow aleq dfrac{0}{-5}Leftrightarrow aleq 0

c) Ta có: sqrt{4 - a} có nghĩa khi 4-ageq 0 Leftrightarrow -ageq -4 Leftrightarrow aleq 4

d) Ta có: sqrt{3a + 7} có nghĩa khi 3a+7geq 0Leftrightarrow 3a geq -7 Leftrightarrow ageq dfrac{-7}{3}

Bài 7 (trang 10 SGK Toán 9 Tập 1)

Tính:

a. sqrt {{{left( {0,1} right)}^2}}

b. sqrt {{{left( { - 0,3} right)}^2}}

c. - sqrt {{{left( { - 1,3} right)}^2}}

d. - 0,4sqrt {{{left( { - 0,4} right)}^2}}

Gợi ý đáp án

a) a. sqrt {{{left( {0,1} right)}^2}}

Ta có: sqrt {{{left( {0,1} right)}^2}} = left| {0,1} right| = 0,1

b) b. sqrt {{{left( { - 0,3} right)}^2}}

Ta có: sqrt {{{left( { - 0,3} right)}^2}} = left| { - 0,3} right| = 0,3

c)  - sqrt {{{left( { - 1,3} right)}^2}}

Ta có: - sqrt {{{left( { - 1,3} right)}^2}} = - left| { - 1,3} right| = -1,3

d)

d. - 0,4sqrt {{{left( { - 0,4} right)}^2}}

Ta có:

- 0,4sqrt {{{left( { - 0,4} right)}^2}} = - 0,4.left| {-0,4} right| = - 0,4.0,4

= – 0,16

Bài 8 (trang 10 SGK Toán 9 Tập 1)

Rút gọn các biểu thức sau:

a) sqrt {{{left( {2 - sqrt 3 } right)}^2}}

c) 2sqrt {{a^2}} với a ≥ 0

b) sqrt {{{left( {3 - sqrt {11} } right)}^2}}

d) 3sqrt {{{left( {a - 2} right)}^2}} với a < 2.

Gợi ý đáp án

a) sqrt {{{left( {2 - sqrt 3 } right)}^2}}

Ta có: sqrt {{{left( {2 - sqrt 3 } right)}^2}} = left| {2 - sqrt 3 } right|=2- sqrt{3}

(Vì 4>3 nên sqrt{4} > sqrt{3} Leftrightarrow 2> sqrt{3} Leftrightarrow 2- sqrt{3}>0 .

Leftrightarrow left| {2 - sqrt 3 } right| =2- sqrt{3})

b) sqrt {{{left( {3 - sqrt {11} } right)}^2}}

Ta có:sqrt {{{left( {3 - sqrt {11} } right)}^2}} = left| {3 - sqrt {11} } right| =sqrt{11}-3.

(Vì 9<11 nên sqrt{9} < sqrt{11} Leftrightarrow 3< sqrt{11} Leftrightarrow 3- sqrt{11} <0

Leftrightarrow left| {3 - sqrt {11} } right| =-(3- sqrt{11})=sqrt{11}-3)

c) 2sqrt {{a^2}} với a ≥ 0

Ta có: 2sqrt {{a^2}} = 2left| a right| = 2{rm{a}} (vì a ge 0 )

d) 3sqrt {{{left( {a - 2} right)}^2}} với a < 2.

Vì a < 2 nên a – 2<0

Leftrightarrow left| a-2 right|=-(a-2)=2-a

Do đó: 3sqrt {{{left( {a - 2} right)}^2}} = 3left| {a - 2} right| = 3left( {2 - a} right) = 6 - 3a.

Bài 9 (trang 11 SGK Toán 9 Tập 1)

Tìm x biết:

a) sqrt {{x^2}} = 7

b) sqrt {{x^2}} = left| { - 8} right|

c) sqrt {4{{rm{x}}^2}} = 6

d) sqrt {9{{rm{x}}^2}} = left| { - 12} right|

Gợi ý đáp án

a) sqrt {{x^2}} = 7

Ta có:

eqalign{
& sqrt {{x^2}} = 7 cr
& Leftrightarrow left| x right| = 7 cr
& Leftrightarrow x = pm 7 cr}

Vậy x= pm 7.

b) sqrt {{x^2}} = left| { - 8} right|

Ta có:

eqalign{
& sqrt {{x^2}} = left| { - 8} right| cr
& Leftrightarrow left| x right| = 8 cr
& Leftrightarrow x = pm 8 cr}

Vậy x= pm 8 .

c) sqrt {4{{rm{x}}^2}} = 6

Ta có:

eqalign{
& sqrt {4{x^2}} = 6 cr
& Leftrightarrow sqrt {{{left( {2x} right)}^2}} = 6 cr
& Leftrightarrow left| {2x} right| = 6 cr
& Leftrightarrow 2x = pm 6 cr
& Leftrightarrow x = pm 3 cr}

Vậy x= pm 3 .

d) sqrt {9{{rm{x}}^2}} = left| { - 12} right|

Ta có:

eqalign{
& sqrt {9{x^2}} = left| { - 12} right| cr
& Leftrightarrow sqrt {{{left( {3x} right)}^2}} = 12 cr
& Leftrightarrow left| {3x} right| = 12 cr
& Leftrightarrow 3x = pm 12 cr
& Leftrightarrow x = pm 4 cr} .

Vậy x= pm 4 .

Bài 10 (trang 11 SGK Toán 9 Tập 1)

Chứng minh

a) (sqrt{3}- 1)^{2}= 4 - 2sqrt{3}

b) sqrt{4 - 2sqrt{3}}- sqrt{3} = -1

Gợi ý đáp án

a) (sqrt{3}- 1)^{2}= 4 - 2sqrt{3}

Ta có: VT={left( {sqrt 3 - 1} right)^2} = {left( {sqrt 3 } right)^2} - 2. sqrt 3 .1 + {1^2}

= 3 - 2sqrt 3 + 1

=(3+1)-2sqrt 3

= 4 - 2sqrt 3 = VP

Vậy (sqrt{3}- 1)^{2}= 4 - 2sqrt{3} (đpcm)

b) sqrt{4 - 2sqrt{3}}- sqrt{3} = -1

Ta có:

VT= sqrt {4 - 2sqrt 3 } - sqrt 3 = sqrt {left( {3 + 1} right) - 2sqrt 3 } - sqrt 3

= sqrt {3 - 2sqrt 3 + 1} - sqrt 3

= sqrt {{{left( {sqrt 3 } right)}^2} - 2.sqrt 3 .1 + {1^2}} - sqrt 3

= sqrt {{{left( {sqrt 3 } right)}^2} - 2.sqrt 3 .1 + {1^2}} - sqrt 3

= left| {sqrt 3 - 1} right| - sqrt 3

=sqrt 3 -1 - sqrt 3

= (sqrt 3 - sqrt 3) -1= -1 = VP.

(do 3>1 Leftrightarrow sqrt 3 > sqrt 1 Leftrightarrow sqrt 3 > 1 Leftrightarrow sqrt 3 -1 > 0

Rightarrow left| sqrt 3 -1 right| = sqrt 3 -1)

III. Giải bài tập toán 9 trang 11, 12 tập 1: Luyện tập

Bài 11 (trang 11 SGK Toán 9 Tập 1)

Tính:

Khám Phá Thêm:   Tiếng Anh 12 Unit 4: 4I Culture Soạn Anh 12 Chân trời sáng tạo trang 58

a)sqrt{16}.sqrt{25} + sqrt{196}:sqrt{49};

b) 36:sqrt{2.3^2.18}-sqrt{169};

c) sqrt{sqrt{81}};

d) sqrt{3^{2}+4^{2}}.

Gợi ý đáp án

a) Ta có: sqrt{16}.sqrt{25} + sqrt{196}:sqrt{49}

=sqrt{4^2}.sqrt{5^2}+sqrt{14^2}:sqrt{7^2}

=left| 4 right| . left| 5 right| + left| {14} right| : left| 7 right|

=4.5+14:7

=20+2=22 .

b) Ta có:

36:sqrt{2.3^2.18}-sqrt{169}

=36:sqrt{(2.9).18} - left| 13 right|

=36:sqrt{18.18}-13

=36:sqrt{18^2}-13

=36: left|18 right| -13

=36:18-13

=2-13=-11.

c) Ta có: sqrt{81}=sqrt{9^2}=left| 9 right| = 9.

Rightarrow sqrt{sqrt{81}}=sqrt{9}= sqrt{3^2}=left| 3 right| =3.

d) Ta có: sqrt{3^{2}+4^{2}}=sqrt{16+9}=sqrt{25}=sqrt{5^2}=left|5 right| =5.

Bài 12 (trang 11 SGK Toán 9 Tập 1)

Tìm x để mỗi căn thức sau có nghĩa:

a) sqrt{2x + 7};

c) displaystyle sqrt {{1 over { - 1 + x}}}

c. sqrt{-3x + 4}

d)sqrt{1 + x^{2}}

Gợi ý đáp án

a) Ta có:

sqrt{2x + 7} có nghĩa khi và chỉ khi: 2x + 7geq 0

Leftrightarrow 2x geq -7

displaystyle Leftrightarrow x geq {{ - 7} over 2}.

b) Ta có

sqrt{-3x + 4} có nghĩa khi và chỉ khi: -3x + 4geq 0

Leftrightarrow -3xgeq -4

displaystyle Leftrightarrow xleq {-4 over {- 3}}

displaystyle Leftrightarrow xleq {4 over { 3}}

c) Ta có:

sqrt{dfrac{1}{-1 + x}} có nghĩa khi và chỉ khi:

displaystyle {1 over displaystyle { - 1 + x}} ge 0 Leftrightarrow - 1 + x > 0

Leftrightarrow x > 1

d) sqrt{1 + x^{2}}

Ta có:x^2geq 0, với mọi số thực x

Leftrightarrow x^2+1 geq 0+ 1, (Cộng cả 2 vế của bất đẳng thức trên với 1)

Leftrightarrow x^2+1 geq 1, mà 1 >0

Leftrightarrow x^2+1 >0

Vậy căn thức trên luôn có nghĩa với mọi số thực x.

Bài 13 (trang 11 SGK Toán 9 Tập 1)

Rút gọn các biểu thức sau:

a) 2sqrt {{a^2}} - 5a với a < 0.

b) sqrt{25a^{2}}+ 3a với a ≥ 0.

c) sqrt {9{a^4}} + 3{a^2},

d) 5sqrt{4a^{6}} - 3a^{3} với a < 0

Gợi ý đáp án

a) Ta có: 2sqrt{a^2}-5a=2|a|-5a

=2.(-a)-5a (vì a<0 nên left| a right| =-a )

=-2a-5a

=(-2-5)a

=-7a

Vậy 2 sqrt{a^2}-5a=-7a.

b) Ta có: sqrt{25a^{2}} + 3a= sqrt{5^2.a^2}+3a

=sqrt{(5a)^2}+3a

=left| 5 aright| +3a

=5a+3a

=(5+3)a

=8a.

(vì ageq 0Rightarrow |5a|=5a )

c) Ta có: sqrt{9a^{4}}+3a^2= sqrt{3^2.(a^2)^2}+ 3a^2

=sqrt{(3a^2)^2}+3a^2

=left| 3 a^2right| +3a^2

=3a^2 + 3a^2

=(3+3)a^2

=6a^2.

(Vì a^2geq 0 với mọi a,,in,,mathbb{R}Rightarrow |3a^2|=3a^2).

d) Ta có:

5sqrt{4a^{6}} - 3a^3=5sqrt{2^2.(a^3)^2} -3a^3

=5.sqrt{(2a^3)^2}-3a^3

=5.left| 2a^3 right| -3a^3

=5.2.(-a^3)-3a^3 (vì a<0 nên|2a^3|=-2a^3)

=10.(-a^3) - 3a^3

=-10a^3-3a^3

=(-10-3)a^3

=-13a^3.

Bài 14 (trang 11 SGK Toán 9 Tập 1)

Phân tích thành nhân tử:

a) x2 – 3 ;

b) x2 – 6

c) x2 + 2√3 x + 3 ;

d) x2 – 2√5 x + 5

Gợi ý đáp án

a) x2 – 3 = x2 – (√3)2 = (x – √3)(x + √3)

b) x2 – 6 = x2 – (√6)2 = (x – √6)(x + √6)

c) x2 + 2√3 x + 3 = x2 + 2√3 x + (√3)2

= (x + √3)2

d) x2 – 2√5 x + 5 = x2 – 2√5 x + (√5)2

= x^2-2sqrt{5}x+5=x^2-2.x.sqrt{5}+(sqrt{5})^2

=(x-sqrt{5})^2

Bài 15 (trang 11 SGK Toán 9 Tập 1)

Giải các phương trình sau:

a) x2 – 5 = 0 ;

b) x2 – 2√11 x + 11 = 0

Gợi ý đáp án

a) x2 – 5 = 0 ⇔ x2 = 5 ⇔ x1 = √5; x2 = -√5

Vậy phương trình có hai nghiệm x1 = √5; x2 = -√5

Cách khác:

x2 – 5 = 0 ⇔ x2 – (√5)2 = 0

⇔ (x – √5)(x + √5) = 0

hoặc x – √5 = 0 ⇔ x = √5

hoặc x + √5 = 0 ⇔ x = -√5

b) x2 – 2√11 x + 11 = 0

⇔ x2 – 2√11 x + (√11)2 = 0

⇔ (x – √11)2 = 0

⇔ x – √11 = 0 ⇔ x = √11

Vậy phương trình có một nghiệm là x = √11

Bài 16 (trang 12 SGK Toán 9 Tập 1)

Đố. Hãy tìm chỗ sai trong phép chứng minh “Con muỗi nặng bằng con voi” dưới đây:

Khám Phá Thêm:   Nghị định 35/2023/NĐ-CP Sửa đổi một số quy định về lập quy hoạch đô thị

Giả sử con muỗi nặng m (gam), còn con voi nặng V (gam). Ta có:

m2 + V2 = V2 + m2

Cộng cả hai vế với -2Mv, ta có:

m2 – 2mV + V2 = V2 – 2mV + m2

hay (m – V)2 = (V – m)2.

Lấy căn bậc hai mỗi vế của đẳng thức trên, ta được:

√(m – V)2 = √(V – m)2

Do đó m – V = V – m

Từ đó ta có 2m = 2V, suy ra m = V. Vậy con muỗi nặng bằng con voi (!).

Gợi ý đáp án

Sai lầm ở chỗ: sau khi lấy căn hai vế của (m – V)2 = (V – m)2 ta phải được kết quả |m – V| = |V – m| chứ không thể có m – V = V – m (theo hằng đẳng thức √A2 = |A|.

Do đó, con muỗi không thể nặng bằng con voi.

IV. Lý thuyết Căn thức bậc hai và hằng đẳng thức sqrt {{A^2}} = left| A right|

1. Căn thức bậc hai

Với sqrt A là một biểu thức đại số, người ta gọi là căn thức bậc hai của A. Khi đó, A được gọi là biểu thức lấy căn hay biểu thức dưới dấu căn.

sqrt A xác định hay có nghĩa khi A lấy giá trị không âm.

2. Hằng đẳng thứcsqrt {{A^2}} = left| A right|

Với mọi số a, ta có sqrt {{a^2}} = left| a right|.

* Một cách tổng quát, với A là một biểu thức ta có

sqrt {{A^2}} = left| A right| nghĩa là

sqrt {{A^2}} = A nếu A ge 0 và sqrt {{A^2}} = - A nếu A < 0.

3. Các dạng toán cơ bản

Dạng 1: Tìm điều kiện để căn thức xác định

Ta có sqrt A xác định hay có nghĩa khi Age 0

Ví dụ:sqrt {x - 1} xác định khi x - 1 ge 0 Leftrightarrow x ge 1

Dạng 2: Rút gọn biểu thức

Sử dụng: Với A là một biểu thức ta có sqrt {{A^2}} = left| A right|

Vì dụ: Với x>2 ta có: A = dfrac{{sqrt {{x^2} - 4x + 4} }}{{x - 2}} = dfrac{{sqrt {{{left( {x - 2} right)}^2}} }}{{x - 2}} = dfrac{{left| {x - 2} right|}}{{x - 2}} = dfrac{{x - 2}}{{x - 2}} = 1

Cảm ơn bạn đã xem bài viết Giải Toán 9 Bài 2: Căn thức bậc hai và hằng đẳng thức Giải SGK Toán 9 Tập 1 (trang 10, 11, 12) tại Thcslytutrongst.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

 

Bài Viết Liên Quan

Hướng dẫn tắt kiểm tra chính tả trên Windows 10
Cách trình bày bài dự thi Đại sứ văn hóa đọc 2025
Phim Hit the Spot: Nội dung, diễn viên và lịch chiếu phim
Previous Post: « Bộ Sưu Tập Hình Nền Hoa Mai Vàng Tuyệt Đẹp Với Hơn 999+ Hình Ảnh Độ Phân Giải 4K
Next Post: Các cách nạp tiền Mobifone trên điện thoại »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Liên Kết Giới Thiệu

Copyright © 2025 · Thcslytutrongst.edu.vn - Thông Tin Kiến Thức Bổ Ích