Bạn đang xem bài viết Giải Toán 9 Bài 1: Sự xác định đường tròn, tính chất đối xứng của đường tròn Giải SGK Toán 9 Hình học Tập 1 (trang 99, 100, 101) tại Thcslytutrongst.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.
Giải bài tập SGK Toán 9 Tập 1 trang 99, 100, 101 để xem gợi ý giải các bài tập của Bài 1: Sự xác định đường tròn, tính chất đối xứng của đường tròn thuộc chương 2 Hình học 9.
Tài liệu được biên soạn với nội dung bám sát chương trình sách giáo khoa Toán lớp 9 tập 1 trang 99, 100, 101. Qua đó, các em sẽ biết cách giải toàn bộ các bài tập của bài 1 Chương 2 trong sách giáo khoa Toán 9 Tập 1. Chúc các bạn học tốt.
Lý thuyết Sự xác định đường tròn, tính chất đối xứng của đường tròn
1. Định nghĩa đường tròn
Đường tròn tâm O bán kính R, kí hiệu (O;R), là hình gồm các điểm cách O một khoảng bằng R.
- Nếu A nằm trên đường tròn (O;R) thì OA=R
- Nếu A nằm trong đường tròn (O; R) thì OA<R
- Nếu A nằm ngoài đường tròn (O;R) thì OA>R.
2. Định lí về sự xác định một đường tròn
Qua ba điểm không thẳng hàng, ta vẽ được một và chỉ một đường tròn.
Tâm O của đường tròn đi qua ba điểm A, B, C là giao điểm của ba đường trung trực của tam giác ABC.
3. Tính chất đối xứng của đường tròn
a) Tâm đối xứng
Đường tròn là hình có tâm đối xứng. Tâm của đường tròn là tâm đối xứng của đường tròn đó.
b) Trục đối xứng
Đường tròn là hình có trục đối xứng. Bất kì đường kính nào cũng là trục đối xứng của đường tròn.
Giải bài tập toán 9 trang 99, 100, 101 tập 1
Bài 1 (trang 99 SGK Toán 9 Tập 1)
Cho hình chữ nhật ABCD có AB = 12cm, BC = 5cm. Chứng minh rằng bốn điểm A, B, C, D thuộc cùng một đường tròn. Tính bán kính của đường tròn đó.
Gợi ý đáp án
Gọi O là giao điểm của hai đường chéo AC và BD.
Ta có OA = OB = OC = OD (tính chất) nên bốn điểm A, B, C, D thuộc cùng một đường tròn (tâm O, bán kính OA)
Theo định lí Pitago trong tam giác vuông ABC có:
Nên bán kính đường tròn là OA = 6.5 cm
Bài 2 (trang 100 SGK Toán 9 Tập 1)
Hãy nối mỗi ô ở cột trái với một ô ở cột phải để được khẳng định đúng:
(1) Nếu tam giác có ba góc nhọn | (4) thì tâm của đường tròn ngoại tiếp tam giác đó nằm bên ngoài tam giác |
(2) Nếu tam giác có góc vuông | (5) thì tâm của đường tròn ngoại tiếp tam giác đó nằm bên trong tam giác |
(3) Nếu tam giác có góc tù | (6) thì tâm của đường tròn ngoại tiếp tam giác đó là trung điểm của cạnh lớn nhất |
(7) thì tâm của đường tròn ngoại tiếp tam giác đó là trung điểm của cạnh nhỏ nhất |
Gợi ý đáp án
– Nối (1) – (5)
– Nối (2) – (6)
– Nối (3) – (4)
Bài 3 (trang 100 SGK Toán 9 Tập 1)
Chứng minh các định lí sau:
a) Tâm của đường tròn ngoại tiếp tam giác vuông là trung điểm của cạnh huyền
b) Nếu một tam giác có một cạnh là đường kính của đường tròn ngoại tiếp thì tam giác đó là tam giác vuông.
Gợi ý đáp án
Vẽ hình minh họa
Hình a) + b)
a) Xét tam giác ABC vuông tại A. Gọi O là trung điểm của BC.
Ta có AO là đường trung tuyến ứng với cạnh huyền nên OA = OB = OC.
=> O là tâm của đường tròn đi qua A, B, C.
Vậy tâm của đường tròn ngoại tiếp ΔABC là trung điểm của cạnh huyền BC. (đpcm)
b) Xét tam giác ABC nội tiếp đường tròn (O) đường kính BC, ta có:
OA = OB = OC
Tam giác ABC có đường trung tuyến AO bằng nửa cạnh BC nên suy ra tam giác ABC vuông tại A. (đpcm)
Bài 4 (trang 100 SGK Toán 9 Tập 1)
Trên mặt phẳng tọa độ Oxy, hãy xác định vị trí của mỗi điểm A(-1; -1), B(-1; -2), C(√2; √2) đối với đường tròn tâm O bán kính 2.
Gợi ý đáp án
Gọi R là bán kính của đường tròn O: R = 2
Ta có:
OA2 = 12 + 12 = 2 => OA = √2 < R
=> A nằm bên trong (O)
OB2 = 12 + 22 = 5 => OB = √5 > R
=> B nằm bên ngoài (O)
OC2 = (√2)2 + (√2)2 = 4 => OC = 2 = R
=> C nằm trên (O)
Bài 5 (trang 100 SGK Toán 9 Tập 1)
Đố. Một tấm bài hình tròn không còn dấu vết của tâm. Hãy tìm lại tâm của hình tròn đó
Gợi ý đáp án
– Cách 1:
– Lấy 3 điểm bất kì trên hình tròn. Vẽ hai dây AB và AC.
– Vẽ đường trung trực của AB và AC. Giao điểm O của đường trung trực này chính là tâm của hình tròn.
– Cách 2:
– Gấp tấm bìa sao cho hai phần của hình tròn trùng nhau, nếp gấp là một đường kính.
– Lại gấp như trên theo nếp gấp khác, ta được một đường kính thứ hai. Giao điểm của hai đường kính này là tâm của đường tròn
Giải bài tập toán 9 trang 100, 101 tập 1: Luyện tập
Bài 6 (trang 100 SGK Toán 9 Tập 1)
Trong các biển báo giao thông sau, biển báo nào có tâm đối xứng, biển nào có trục đối xứng?
a) Biển cấm đi ngược chiều? (h.58)
b) Biển cấm ô tô (h.59)
Gợi ý đáp án
– Hình 58 có tâm đối xứng là tâm đường tròn, có hai trục đối xứng là hai đường kính vuông góc với các cạnh của hình chữ nhật trong đường tròn.
– Hình 59 có một trục đối xứng, không có tâm đối xứng.
Bài 7 (trang 101 SGK Toán 9 Tập 1)
Hãy nối mỗi ô ở cột trái với một ô ở cột phải để được khẳng định đúng:
(1) Tập hợp các điểm có khoẳng cách đến điểm A cố định bằng 2cm | (4) là đường tròn tâm A bán kính 2cm |
(2) Đường tròn tâm A bán kính 2cm gồm tất cả những điểm | (5) có khoảng cách đến điểm A nhỏ hơn hoặc bằng 2cm |
(3) Hình tròn tâm A bán kính 2cm gồm tất cả những điểm | (6) có khoảng cách đến điểm A bằng 2cm |
(7) có khoảng cách đến điểm A lớn hơn 2cm |
Gợi ý đáp án
– Nối (1) – (4)
– Nối (2) – (6)
– Nối (3) – (5)
Bài 8 (trang 101 SGK Toán 9 Tập 1)
Cho góc nhọn xAy và hai điểm B, C thuộc tia Ax. Dựng đường tròn (O) đi qua B và C sao cho tâm O nằm trên tia Ay.
Gợi ý đáp án
– Tâm O là giao điểm giữa đường trung trực của BC và tia Ay. Nên ta có cách dựng:
+ Dựng đường trung trực (d) của BC. (d) cắt tia Ay tại O.
+ Vẽ đường tròn (O, OB). Đường tròn này đi qua B, C. Đó là đường tròn cần dựng.
– Chứng minh:
+ Vì O ∈ đường trung trực (d) của BC nên OB = OC. Suy ra (O, OB) đi qua B, C
+ Vì O ∈ Ay nên (O, OB) thỏa mãn điều kiện đề bài.
Bài 9 (trang 101 SGK Toán 9 Tập 1)
Đố
a) Vẽ hình hoa bốn cánh. Hình hoa bốn cánh trên hình 60 được tạo bởi một hình vuông và tâm của cung là tâm của đường tròn chứa cung đó). Hãy vẽ lại hình 60 vào vở.
Hình 60
b) Vẽ lọ hoa. Chiếc lọ hoa trên hình 61 được vẽ trên giấy kẻ ô vuông bởi năm cung có tâm A, B, C, D, E. Hãy vẽ lại hình 61 vào giấy kẻ ô vuông.
Hình 61
Gợi ý đáp án
a) Cách vẽ:
– Vẽ hình vuông ABCD.
– Vẽ cung tròn tâm A, bán kính là cạnh hình vuông. Cung tròn này đi qua B, D.
– Tương tự với các cung tròn còn lại.
Ta được bốn cung tròn tạo thành hình hoa bốn cánh.
b) Cách vẽ:
– Kẻ lại các ô vuông và lấy các điểm như hình 61.
– Lần lượt vẽ các cung tròn có tâm là các điểm A, B, C, D, E và bán kính là đường chéo của ô vuông.
Ta được năm cung tròn liền nét với nhau tạo thành hình chiếc lọ hoa.
Cảm ơn bạn đã xem bài viết Giải Toán 9 Bài 1: Sự xác định đường tròn, tính chất đối xứng của đường tròn Giải SGK Toán 9 Hình học Tập 1 (trang 99, 100, 101) tại Thcslytutrongst.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.