Thcslytutrongst.edu.vn - Thông Tin Kiến Thức Bổ Ích

Công thức nguyên hàm Bảng nguyên hàm đầy đủ nhất

Tháng mười một 14, 2023 by Thcslytutrongst.edu.vn

Bạn đang xem bài viết Công thức nguyên hàm Bảng nguyên hàm đầy đủ nhất tại Thcslytutrongst.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Công thức nguyên hàm hay bảng bảng nguyên hàm là một chủ đề thường xuyên xuất hiện trong các bài kiểm tra, bài thi THPT Quốc gia môn Toán.

Hãy cùng Thcslytutrongst.edu.vn tham khảo bài viết dưới đây để nắm vững tất cả kiến thức về khái niệm bảng nguyên hàm cũng như các công thức nguyên hàm cơ bản. Qua tài liệu này các em nhanh chóng nắm vững được kiến thức để giải nhanh các bài Toán. Ngoài ra các em tham khảo thêm bảng đạo hàm.

Mục Lục Bài Viết

  • I. Khái niệm công thức nguyên hàm
  • II. Tính chất của nguyên hàm
  • III. Sự tồn tại của nguyên hàm
  • IV. Bảng nguyên hàm
  • V. Một số phương pháp tìm nguyên hàm

I. Khái niệm công thức nguyên hàm

Cho hàm số f(x) xác định trên K (K là khoảng, đoạn hay nửa khoảng). Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F'(x) = f(x) với mọi x ∈ K.

Kí hiệu: ∫ f(x)dx = F(x) + C.

Định lí 1:

1) Nếu F(x) là một nguyên hàm của f(x) trên K thì với mỗi hằng số C, hàm số G(x) = F(x) + C cũng là một nguyên hàm của f(x) trên K.

2) Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì mọi nguyên hàm của f(x) trên K đều có dạng F(x) + C, với C là một hằng số.

Khám Phá Thêm:   Tập làm văn lớp 4: Kết bài mở rộng Tả cây cối (14 mẫu) Xây dựng kết bài trong bài văn miêu tả cây cối

Do đó F(x) + C; C ∈ R là họ tất cả các nguyên hàm của f(x) trên K.

II. Tính chất của nguyên hàm

  • (∫ f(x)dx)’ = f(x) và ∫ f'(x)dx = f(x) + C.
  • Nếu F(x) có đạo hàm thì: ∫d(F(x)) = F(x) + C).
  • ∫ kf(x)dx = k∫ f(x)dx với k là hằng số khác 0.
  • ∫[f(x) ± g(x)]dx = ∫ f(x)dx ± ∫g(x)dx.

III. Sự tồn tại của nguyên hàm

Định lí:

Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K.

IV. Bảng nguyên hàm

Công thức nguyên hàm Bảng nguyên hàm đầy đủ nhất

2. int d x=x+C

3. int x^{alpha} d x=frac{1}{alpha+1} x^{alpha+1}+C(alpha neq-1)

4. int frac{1}{x^{2}} d x=-frac{1}{x}+C

5. int frac{1}{x} d x=ln |x|+C

6. int e^{x} d x=c^{x}+C

7. int a^{x} d x=frac{a^{x}}{ln a}+C

8. int cos x d x=sin x+C

9. int sin x d x=-cos x+C

10. int tan x . d x=-ln |cos x|+C

11. int cot x . d x=ln |sin x|+C

12. int frac{1}{cos ^{2} x} d x=tan x+C

13. int frac{1}{sin ^{2} x} d x=-cot x+C

14. intleft(1+tan ^{2} xright) d x=tan x+C

15. intleft(1+cot ^{2} xright) d x=-cot x+C

int ln (a x+b) mathrm{d} mathrm{x}=left(x+frac{b}{a}right) ln (a x+b)-x+C

int sqrt{a^{2}-x^{2}} mathrm{dx}=frac{x sqrt{a^{2}-x^{2}}}{2}+frac{a^{2}}{2} arcsin frac{x}{a}+C

16. int(a x+b)^{alpha} mathrm{d} mathrm{x}=frac{1}{a} frac{(a x+b)^{alpha+1}}{alpha+1}+c, alpha neq-1

17. int x d x=frac{x^{2}}{2}+C

18. int frac{mathrm{dx}}{a x+b}=frac{1}{a} ln |a x+b|+c

19. int c^{a x+b} d x=frac{1}{a} c^{a x+b}+C

20. int a^{k x+b} d x=frac{1}{k} frac{a^{k x+b}}{ln a}+C

21. int cos (a x+b) d x=frac{1}{a} sin (a x+b)+C

22. int sin (a x+b) d x=-frac{1}{a} cos (a x+b)+C

23. int tan (a x+b) mathrm{dx}=-frac{1}{a} ln |cos (a x+b)|+C

24. int cot (a x+b) mathrm{dx}=frac{1}{a} ln |sin (a x+b)|+C

25. int frac{1}{cos ^{2}(a x+b)} d x=frac{1}{a} tan (a x+b)+C

26. int frac{1}{sin ^{2}(a x+b)} d x=-frac{1}{a} cot (a x+b)+C

27. frac{intleft(1+tan ^{2}(a x+b)right) d x=frac{1}{a} tan (a x+b)+C}{}

28. frac{intleft(1+cot ^{2}(a x+b)right) d x=-frac{1}{a} cot (a x+b)+C}{int c^{a x} cos b x mathrm{dx}=frac{c^{a x}(a cos b x+b sin b x)}{a^{2}+b^{2}}+C}

int e^{a x} sin b x mathrm{dx}=frac{c^{operatorname{ax}}(a sin b x-b cos b x)}{a^{2}+b^{2}}+C

V. Một số phương pháp tìm nguyên hàm

1. Phương pháp đổi biến

1.1. Đổi biến dạng 1

a. Định nghĩa.

Cho hàm số u = u(x) có đạo hàm liên tục trên K và hàm số y = f(u) liên tục sao cho f[u(x)] xác định trên K. Khi đó, nếu F là một nguyên hàm của f, tức là: ∫ f(u)du = F(u) + C thì:

∫ f[u(x)]u'(x)dx = F[u(x)] + C

b. Phương pháp giải

Bước 1: Chọn t = φ(x). Trong đó φ(x) là hàm số mà ta chọn thích hợp.

Bước 2: Tính vi phân hai vế: dt = φ'(t)dt.

Bước 3: Biểu thị: f(x)dx = f[φ(t)]φ'(t)dt = g(t)dt.

Bước 4: Khi đó: I = ∫ f(x)dx = ∫g(t)dt = G(t) + C.

1.2. Phương pháp đổi biến loại 2

a. Định nghĩa:

Cho hàm số f(x) liên tục trên K; x = φ(t) là một hàm số xác định, liên tục trên K và có đạo hàm là φ'(t). Khi đó, ta có:

∫ f(x)dx = ∫ f[φ(t)].φ'(t)dt

b. Phương pháp chung

Bước 1: Chọn x = φ( t), trong đó φ(t) là hàm số mà ta chọn thích hợp.

Bước 2: Lấy vi phân hai vế: dx = φ'(t)dt.

Khám Phá Thêm:   KHTN 9 Bài 10: Năng lượng của dòng điện và công suất điện Giải KHTN 9 Cánh diều trang 52, 53, 54, 55

Bước 3: Biến đổi: f(x)dx = f[φ(t)]φ'(t)dt = g(t)dt.

Bước 4: Khi đó tính: ∫ f(x)dx = ∫g(t)dt = G(t) + C.

c. Các dấu hiệu đổi biến thường gặp

sqrt{a^{2}-x^{2}}

Đặt x=|a| sin t; với t inleft[-frac{pi}{2} ; frac{pi}{2}right]

hoặc x=|a| cost ; với t in[0 ; pi]

sqrt{x^{2}-a^{2}}

Đặt x=frac{|a|}{sin t}; với t inleft[-frac{pi}{2} ; frac{pi}{2}right] backslash{0}

hoặc x=frac{|a|}{cos t}; với t in[0 ; pi] backslashleft{frac{pi}{2}right}

sqrt{a^{2}+x^{2}}

Đặt x=|a| tant ; với t inleft(-frac{pi}{2} ; frac{pi}{2}right)

hoặc x=|a| cot t ; với t in(0 ; pi)

sqrt{frac{a+x}{a-x}} hoặc sqrt{frac{a-x}{a+x}} Đặt mathrm{x}=operatorname{acos} 2 mathrm{t}
sqrt{(x-a)(b-x)} Đặt mathrm{x}=mathrm{a}+(mathrm{b}-mathrm{a}) sin ^{2} mathrm{t}
frac{1}{a^{2}+x^{2}} Đặt mathrm{x}=mathrm{a} . tant ; với t inleft(-frac{pi}{2} ; frac{pi}{2}right)

Cảm ơn bạn đã xem bài viết Công thức nguyên hàm Bảng nguyên hàm đầy đủ nhất tại Thcslytutrongst.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

 

Bài Viết Liên Quan

Hướng dẫn tắt kiểm tra chính tả trên Windows 10
Cách trình bày bài dự thi Đại sứ văn hóa đọc 2025
Phim Hit the Spot: Nội dung, diễn viên và lịch chiếu phim
Previous Post: « Hướng dẫn đăng ký thành viên trên thư viện trực tuyến Violet
Next Post: Bài văn mẫu lớp 12: Bài viết số 5 (Đề 1 đến Đề 3) Bài viết số 5 lớp 12 »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Liên Kết Giới Thiệu

Copyright © 2025 · Thcslytutrongst.edu.vn - Thông Tin Kiến Thức Bổ Ích