Thcslytutrongst.edu.vn - Thông Tin Kiến Thức Bổ Ích

Bài tập hằng đẳng thức lớp 8 Ôn tập Toán 8

Tháng 6 19, 2023 by Thcslytutrongst.edu.vn

Bạn đang xem bài viết Bài tập hằng đẳng thức lớp 8 Ôn tập Toán 8 tại Thcslytutrongst.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Bài tập hằng đẳng thức lớp 8 là tài liệu vô cùng hữu ích cung cấp cho các em học sinh tài liệu tham khảo, học tập, bồi dưỡng và nâng cao kiến thức môn toán theo chương trình hiện hành.

Bài tập về hằng đẳng thức tổng hợp toàn bộ công thức về hằng đẳng thức, ví dụ minh họa kèm theo các bài tập có đáp án và lời giải chi tiết và bài tập tự luyện. Hi vọng qua tài liệu này các em sẽ vận dụng kiến thức của mình để làm bài tập, rèn luyện linh hoạt cách giải các dạng đề để đạt kết quả cao trong các bài kiểm tra, bài thi học sinh giỏi. Bên cạnh đó các bạn xem thêm tài liệu: bài tập bình phương một tổng, Bài tập các trường hợp đồng dạng của tam giác.

Mục Lục Bài Viết

  • A. Lý thuyết 7 hằng đẳng thức
  • B. Ví dụ minh họa về hằng đẳng thức
  • C. Bài tập hằng đẳng thức đáng nhớ
  • D. Bài tập nâng cao cho các hằng đẳng thức

A. Lý thuyết 7 hằng đẳng thức

1. Bình phương của một tổng

– Bình phương của một tổng bằng bình phương số thứ nhất cộng với hai lần tích số thứ nhân nhân số thứ hai rồi cộng với bình phương số thứ hai.

(A + B)2 = A2 + 2AB + B2

Ví dụ:

(mathrm{x}+2)^{2}=mathrm{x}^{2}+2 . mathrm{x} cdot 2+2^{2}=mathrm{x}^{2}+4 mathrm{x}+4

2. Bình phương của một hiệu

– Bình phường của một hiệu bằng bình phương số thứ nhất trừ đi hai lần tích số thứ nhất nhân số thứ 2 rồi cộng với bình phương số thứ hai.

(A – B)2 = A2 – 2AB + B2

Ví dụ:

( x – 2)2 = x2 – 2. x. 22 = x2 – 4x + 4

3. Hiệu hai bình phương

– Hiệu hai bình phương bằng hiệu hai số đó nhân tổng hai số đó.

A2 – B2 = (A + B)(A – B)

Ví dụ:

x^{2}-4=x^{2}-2^{2}=(x-2)(x+2)

4. Lập phương của một tổng

– Lập phương của một tổng = lập phương số thứ nhất + 3 lần tích bình phương số thứ nhất nhân số thứ hai + 3 lần tích số thứ nhất nhân bình phương số thứ hai + lập phương số thứ hai.

(A + B)3 = A3 + 3A2B + 3AB2 + B3

Phát biểu thành lời: Lập phương của một tổng bằng lập phương số thứ nhất cộng ba lần bình phương số thứ nhất nhân với số thứ hai, cộng với ba lần số thứ nhất nhân bình phương số thứ hai rồi cộng với lập phương số thứ hai.

Khám Phá Thêm:   Tập làm văn lớp 5: Tả một đồ vật mà em yêu thích (31 mẫu) Bài văn tả đồ vật hay nhất

Ví dụ minh họa

a. {{left( x+2y right)}^{3}}={{x}^{3}}+3.{{x}^{2}}.2y+3.x.{{left( 2y right)}^{2}}+{{left( 2y right)}^{3}}={{x}^{3}}+6{{x}^{2}}y+12x{{y}^{2}}+8{{y}^{3}}

b. {{left( 1+y right)}^{3}}={{1}^{3}}+{{3.1}^{2}}.y+3.1.{{y}^{2}}+{{y}^{3}}=1+3y+3{{y}^{2}}+{{y}^{3}}

c. {{x}^{3}}+6{{x}^{2}}+12x+8={{x}^{3}}+3.{{x}^{2}}.2+3.x{{.2}^{2}}+{{2}^{3}}={{left( x+2 right)}^{3}}

5. Lập phương của một hiệu

– Lập phương của một hiệu = lập phương số thứ nhất – 3 lần tích bình phương số thứ nhất nhân số thứ hai + 3 lần tích số thứ nhất nhân bình phương số thứ hai – lập phương số thứ hai.

(A – B)3 = A3 – 3A2B + 3AB2 – B3

Phát biểu thành lời: Lập phương của một tổng bằng lập phương số thứ nhất trừ ba lần bình phương số thứ nhất nhân với số thứ hai, cộng với ba lần số thứ nhất nhân bình phương số thứ hai rồi trừ với lập phương số thứ hai.

Ví dụ minh họa

a. {{left( x-y right)}^{3}}={{x}^{3}}-3{{x}^{2}}y+3x{{y}^{2}}+{{y}^{3}}

b. (2-3xy+3{{x}^{2}}{{y}^{2}})-({{y}^{3}}{{x}^{3}}+1)=2-3xy+3{{x}^{2}}{{y}^{2}}-{{x}^{3}}{{y}^{3}}-1=1-3xy+3{{x}^{2}}{{y}^{2}}-{{x}^{3}}{{y}^{3}}

=1-{{3.1}^{2}}.xy+3.1.{{left( xy right)}^{2}}-{{left( xy right)}^{3}}={{left( 1-xy right)}^{3}}

6. Tổng hai lập phương

– Tổng của hai lập phương bằng tổng hai số đó nhân với bình phương thiếu của hiệu.

A3 + B3 = (A + B)(A2 – AB + B2)

Ví dụ;

x^{3}+8=x^{3}+2^{3}=(x+2)left(x^{2}-2 x+4right)

a. {{x}^{3}}+{{y}^{3}}=left( x+y right)left( {{x}^{2}}-xy+{{y}^{2}} right)

b. {{left( 2x-1 right)}^{3}}=left( 2x-1 right)left( 4{{x}^{2}}+2x+1 right)

7. Hiệu hai lập phương

– Hiệu của hai lập phương bằng hiệu của hai số đó nhân với bình phương thiếu của tổng.

A3 – B3 = (A – B)(A2 + AB + B2)

Ví dụ:

mathrm{du}: mathrm{x}^{3}-8=mathrm{x}^{3}-2^{3}=(mathrm{x}-2)left(mathrm{x}^{2}+2 mathrm{x}+4right)

mathrm{x}^{3}-8=mathrm{x}^{3}-2^{3}=(mathrm{x}-2)left(mathrm{x}^{2}+2 mathrm{x}+4right)

B. Ví dụ minh họa về hằng đẳng thức

Ví dụ 1

Viết các biểu thức sau thành đa thức:

a) (3x+4)^{2}

b) (5x-y)^{2}

c) (xy-frac{1}{2}y)^{2}

Gợi ý đáp án

a) (3x+4)^{2}

b) (5x-y)^{2}

c) (xy-frac{1}{2}y)^{2}

Ví dụ 2

Viết các biểu thức sau thành bình phương của một tổng hoặc một hiệu

a) x^{2}+2x+1

b) 9-24x+16x^{2}

c) 4x^{2}+frac{1}{4}+2x

Gợi ý đáp án

a) x^{2}+2x+1

b) 9-24x+16x^{2}

c) 4x^{2}+frac{1}{4}+2x

=(2x+frac{1}{2})^{2}

Ví dụ 3

Viết các biểu thức sau thành đa thức:

a) (3x - 5)(3x + 5)

b) (x - 2y)(x + 2y)

c) (-x-frac{1}{2}y)(-x+frac{1}{2}y)

Gợi ý đáp án

a) (3x - 5)(3x + 5)

b) (x - 2y)(x + 2y)

c) (-x-frac{1}{2}y)(-x+frac{1}{2}y)

=x^{2}-frac{1}{4}y^{2}

Ví dụ 4

a) Viết biểu thức tính diện tích của hình vuông có cạnh bằng 2x + 3 dưới dạng đa thức

b) Viết biểu thức tính thể tích của khối lập phương có cạnh bằng 3x – 2 dưới dạng đa thức

Gợi ý đáp án

a) (2x+3)^{2}=4x^{2}+12x+9

b) (3x-2)^{3}=27x^{3}-54x^{2}+36x-8

Ví dụ 5

Tính nhanh

a) 38 times  42

b) 102^{2}

c) 198^{2}

d) 75^{2}-25^{2}

Gợi ý đáp án

a) 38 times  42

=40^{2}-2^{2}=1600-4=1598

b) 102^{2}

=10000+400+4=10404

c) 198^{2}

=40000-800+4=39204

d) 75^{2}-25^{2}

Ví dụ 6

Viết các biểu thức sau thành đa thức:

a) (2x-3)^{3}

b) (a+3b)^{3}

c) (xy-1)^{3}

Gợi ý đáp án

a) (2x-3)^{3}

=8x^{3}-36x^{2}+54x-27

b) (a+3b)^{3}

=a^{3}+9a^{2}b+27ab^{2}+27b^{3}

c) (xy-1)^{3}

=x^{3}y^{3}-3x^{2}y^{2}+3xy-1

C. Bài tập hằng đẳng thức đáng nhớ

Bài toán 1: Tính

1 .(mathrm{x}+2 mathrm{y})^{2} mid

2 .(2 mathrm{x}+3 mathrm{y})^{2}

3 .(3 mathrm{x}-2 mathrm{y})^{2}

4 .(5 mathrm{x}-mathrm{y})^{2}

5 .left(mathrm{x}+frac{1}{4}right)^{2}

6 .left(2 mathrm{x}-frac{1}{2}right)^{2}

7 .left(frac{1}{3} mathrm{x}-frac{1}{2} mathrm{y}right)^{2}

8 .(3 mathrm{x}+1)(3 mathrm{x}-1)

9 .left(mathrm{x}^{2}+frac{2}{5} mathrm{y}right)left(mathrm{x}^{2}-frac{2}{5} mathrm{y}right)

10 .left(frac{mathrm{x}}{2}-mathrm{y}right)left(frac{mathrm{x}}{2}+mathrm{y}right)

11 .left(frac{mathrm{x}}{2}-2 mathrm{y}right)^{2}

12 .(sqrt{2} mathrm{x}-mathrm{y})^{2}

13 .left(frac{3}{2} mathrm{x}+3 mathrm{y}right)^{2}

14 .(sqrt{2} mathrm{x}+sqrt{8 mathrm{y}})^{2}

15 .left(mathrm{x}+frac{1}{6} mathrm{y}+3right)^{2}

16 .left(frac{1}{2} mathrm{x}-4 mathrm{y}right)^{2}

17 .left(frac{mathrm{x}}{2}+2 mathrm{y}^{2}right)left(frac{mathrm{x}}{2}-2 mathrm{y}^{2}right)

18 .left(mathrm{x}^{2}-4right)left(mathrm{x}^{2}+4right)

19 .(mathrm{x}+mathrm{y})^{2}+(mathrm{x}-mathrm{y})^{2}

20 .(2 mathrm{x}+3)^{2}-(mathrm{x}+1)^{2}

Bài toán 2: Tính

1. left(mathrm{x}+frac{1}{3}right)^{3}

2 . left(2 mathrm{x}+mathrm{y}^{2}right)^{3}

3)left(mathrm{x}^{2}+3 mathrm{x}+9right)

4 .left(3 mathrm{x}^{2}-2 mathrm{y}right)^{3}

5 .left(frac{2}{3} mathrm{x}^{2}-frac{1}{2} mathrm{y}right)^{3}

6 .left(2 mathrm{x}+frac{1}{2}right)^{3}

7 .(mathrm{x}-3)^{3}

8 . mid(mathrm{x}+1)left(mathrm{x}^{2}-mathrm{x}+1right)

9 . (mathrm{x}-3)left(mathrm{x}^{2}+3 mathrm{x}+9right)

10 .(mathrm{x}-2)left(mathrm{x}^{2}+2 mathrm{x}+4right)

11 .(mathrm{x}+4)left(mathrm{x}^{2}-4 mathrm{x}+16right)

12 .(mathrm{x}-3 mathrm{y})left(mathrm{x}^{2}+3 mathrm{xy}+9 mathrm{y}^{2}right)

13 .left(mathrm{x}^{2}-frac{1}{3}right)left(mathrm{x}^{4}+frac{1}{3} mathrm{x}^{2}+frac{1}{9}right)

14 .left(frac{1}{3} mathrm{x}+2 mathrm{y}right)left(frac{1}{9} mathrm{x}^{2}-frac{2}{3} mathrm{xy}+4 mathrm{y}^{2}right)

Bài toán 3: Viết các đa thức sau thành tích

1 . mathrm{x}^{2}-6 mathrm{x}+9

2.25+10 mathrm{x}+mathrm{x}^{2}

3 . frac{1}{4} mathrm{a}^{2}+2 mathrm{ab}^{2}+4 mathrm{b}^{4}

4 . frac{1}{9}-frac{2}{3} mathrm{y}^{4}+mathrm{y}^{8}

5 . mathrm{x}^{3}+8 mathrm{y}^{3}

6.8 mathrm{y}^{3}-125

7 . mathrm{a}^{6}-mathrm{b}^{3}

8 . mathrm{x}^{2}-10 mathrm{x}+25

9. 8 mathrm{x}^{3}-frac{1}{8}

10 . mathrm{x}^{2}+4 mathrm{xy}+4 mathrm{y}^{2}

11 .(3 mathrm{x}+2)^{2}-4

12.4 mathrm{x}^{2}-25 mathrm{y}^{2}

13.4 mathrm{x}^{2}-49

14.8 mathrm{z}^{3}+27

15 . frac{9}{25} mathrm{x}^{4}-frac{1}{4}

16 . mathrm{x}^{32}-1

17.4 mathrm{x}^{2}+4 mathrm{x}+1

18 . mathrm{x}^{2}-20 mathrm{x}+100

19 . mathrm{y}^{4}-14 mathrm{y}^{2}+49

20.125 mathrm{x}^{3}-64 mathrm{y}^{3}

Bài 4: Tính nhanh

1. 1001^{2}

2. 29,9.30,1

3. 201^{2}

4. 37.43

5. 199^{2}

6. 37^{2}+2.37 .13+13^{2}

7. 51,7-2.51,7.31,7+31,7^{2}

8. 20,1.19,9

9. 31,8^{2}-2.31,8.21,8+21,8^{2}

10.33,3^{2}-2.33,3.3,3+3,3^{2}

Bài toán 5: Rút gọn rồi tính giá trị biểu thức

1. (mathrm{x}-10)^{2}-mathrm{x}(mathrm{x}+80)

2. (2 mathrm{x}+9)^{2}-mathrm{x}(4 mathrm{x}+31)

3. 4 mathrm{x}^{2}-28 mathrm{x}+49

4. mathrm{x}^{3}-9 mathrm{x}^{2}+27 mathrm{x}-27

5.9 mathrm{x}^{2}+42 mathrm{x}+49 với mathrm{x}=1

6. 25 mathrm{x}^{2}-2 mathrm{xy}+frac{1}{25} mathrm{y}^{2} với mathrm{x}=-frac{1}{5}, mathrm{y}=-5

7. 27+(mathrm{x}-3)left(mathrm{x}^{2}+3 mathrm{x}+9right) với mathrm{x}=-3

Bài toán 6 : viết biểu thức (4 n+3)^{2}-25 thành tích chứng minh với moi số nguyên n biểu thức (4 n+3)^{2}-25 chia hết cho 8

Bài toán 7 : Chứng minh với moi số nguyên N biểu thức (2 n+3)^{2}-9 chia hết cho 4

Bài toán 8 : Viết biểu thức sau dưới dang tích

a. (x+y+x)^{2}-2(x+y+x)(y+z)+(y+z)^{2}

b. (x+y+x)^{2}-(y+z)^{2}

c. (x+3)^{2}+4(x+3)+4

d. 25+10(x+1)+(x+1)^{2}

e. (x+2)^{2}+2(x+2)(x-2)+(x-2)^{2}

f. (x-3)^{2}-2left(x^{2}-9right)+(x+3)^{2}

Bài toán 9. Điền vào dấu ? môt biểu thức để được môt hằng đẳng thức, có mấy cách điền

a. (x+1).?

b.left(x^{2}+x+1right) . ?

c.left(x^{2}+2 x+4right) . ?

d. (x-2) . ?

e. x^{2}+2 x+?

g. left(4 x^{2}+?+4right)

h. left(x^{2}-x+1right) . ?

i. ?+8 x+16

Bài toán 10. Viết biểu thức sau dưới dang tích

a. x^{2}-2

b. y^{2}-13

c. 2 x^{2}-4

d. left(x^{2}-1right)^{2}-(y+3)^{2}

e. left(a^{2}-b^{2}right)^{2}-left(a^{2}+b^{2}right)^{2}

g. a^{6}-b^{6}

Bài toán 11. Viết biểu thức sau dưới dang tích

Khám Phá Thêm:   Văn mẫu lớp 10: Viết bài văn nghị luận phân tích đánh giá về nội dung bài thơ Tiếng trống trường Viết văn bản nghị luận phân tích, đánh giá một tác phẩm thơ

a. -4 x^{2}+9 y^{2}

b .8+(4 x-3)^{3}

Bài toán 12. Viết biểu thức sau dưới dạng tổng

a. (x+y+z+t) cdot(x+y-z-t)

b..(x+2 y+3 z+t)^{3}.

Bài toán 13: Viết biểu thức sau dưới dạng tổng

a. left(x^{2}-2 x-1right)^{2}

b. left(m^{2}+2 m-3right)^{2}.

text { c. }(x+1)left(x^{2}+1right)left(x^{4}+1right)

d.2. (3+1)left(3^{2}+1right)left(3^{4}+1right)

…………..

D. Bài tập nâng cao cho các hằng đẳng thức

Bài 1. Cho đa thức 2x² – 5x + 3 . Viết đa thức trên dưới dạng 1 đa thức của biến y trong đó y = x + 1.

Lời Giải

Theo đề bài ta có: y = x + 1 => x = y – 1.

A = 2x² – 5x + 3

= 2(y – 1)² – 5(y – 1) + 3 = 2(y² – 2y + 1) – 5y + 5 + 3 = 2y² – 9y + 10

Bài 2. Tính nhanh kết quả các biểu thức sau:

a) 127² + 146.127 + 73²

b) 98.28– (184 – 1)(184 + 1)

c) 100² – 99² + 98² – 97² + …+ 2² – 1²

d) (20² + 18² + 16² +…+ 4² + 2²) – ( 19² + 17² + 15² +…+ 3² + 1²)

Lời Giải

a) A = 127² + 146.127 + 73²

= 127² + 2.73.127 + 73²

= (127 + 73)²

= 200²

= 40000 .

b) B = 9 8 .2 8 – (18 4 – 1)(18 4 + 1)

= 188 – (188 – 1)

= 1

c) C = 100² – 99² + 98² – 97² + …+ 2² – 1²

= (100 + 99)(100 – 99) + (98 + 97)(98 – 97) +…+ (2 + 1)(2 – 1)

= 100 + 99 + 98 + 97 +…+ 2 + 1

= 5050.

d) D = (20² + 18² + 16² +…+ 4² + 2²) – ( 19² + 17² + 15² +…+ 3² + 1²)

= (20² – 19²) + (18² – 17²) + (16² – 15²)+ …+ (4² – 3²) + (2² – 1²)

= (20 + 19)(20 – 19) + (18 + 17)(18 – 17) + ( 16 +15)(16 – 15)+ …+ (4 + 3)(4 – 3) + (2 + 1)(2 – 1)

= 20 + 19 + 18 + 17 + 16 +15 + …+ 4 + 3 + 2 + 1

= 210

Bài 3. So sánh hai số sau, số nào lớn hơn?

a) A = (2 + 1)(22+ 1)(24+ 1)(28 + 1)(216 + 1) và B = 232

b) A = 1989.1991 và B = 19902

Gợi ý đáp án

a) Ta nhân 2 vế của A với 2 – 1, ta được:

A = (2 – 1)(2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

Ta áp dụng đẳng thức ( a- b)(a + b) = a² – b² nhiều lần, ta được:

A = 232 – 1.

=> Vậy A < B.

b) Ta đặt 1990 = x => B = x²

Vậy A = (x – 1)(x + 1) = x² – 1

=> B > A là 1.

Bài 4. Chứng minh rằng:

a) a(a – 6) + 10 > 0.

b) (x – 3)(x – 5) + 4 > 0.

c) a² + a + 1 > 0.

Lời Giải

a) VT = a² – 6a + 10 = (a – 3)² + 1 ≥ 1

=> VT > 0

b) VT = x² – 8x + 19 = (x – 4)² + 3 ≥ 3

=> VT > 0

c) a² + a + 1 = a² + 2.a.½ + ¼ + ¾ = (a + ½ )² + ¾ ≥ ¾ >0.

Bài 5. Tìm giá trị nhỏ nhất của các biểu thức sau:

a) A = x² – 4x + 1

b) B = 4x² + 4x + 11

c) C = 3x² – 6x – 1

Lời giải

a) Ta sẽ biến đổi A= x² – 4x + 1 = x² – 4x + 4 – 3 = ( x- 2)² – 3

Khám Phá Thêm:   Văn mẫu lớp 6: Tả anh trai của em (2 mẫu) Những bài văn mẫu lớp 6

Do ( x- 2)² > 0 nên => ( x- 2)² – 3 ≥ -3

Vậy giá trị nhỏ nhất của biểu thức A(Amin) = -3 khi và chỉ khi x = 2.

b) B = 4x² + 4x + 11 = (2x + 1)² + 10

Vậy Bmin = 10 khi và chỉ khi x = -½.

c) C = 3x² – 6x – 1 = 3(x – 1)² – 4

Vậy Cmin = -4 khi và chỉ khi x = 1.

Bài 6. Cho a + b + c = 2p. Chứng minh rằng: 2bc + b² + c² – a² = 4p(p – a)

Ta sẽ đi biến đổi VP.

VP = 2p(2p – 2a) = (a + b + c)( a + b – c) = ( b + c )² – a² = b² + 2bc + c² – a² = VT (đccm)

Bài 7. Hiệu các bình phương của 2 số tự nhiên chẵn liên tiếp bằng 36. Tìm hai số ấy.

Lời Giải

Gọi 2 số chẵn liên tiếp là x và x + 2 (x chẵn). Ta có:

(x + 2)² – x² = 36

<=> x² + 4x + 4 – x² = 36

<=> 4x = 32

<=> x = 8

=> số thứ 2 là 8+2 = 10

Đáp số: 8 và 10

Bài 8. Tìm 3 số tự nhiên liên tiếp biết rằng tổng các tích của từng cặp 2 số trong 3 số ấy bằng 74

Lời Giải

Gọi 3 số tự nhiên liên tiếp là: x – 1, x, x + 1 ( đk: x>0)

Vậy ta có: x(x – 1) + (x – 1)(x + 1) + x(x + 1)= 74

Ta nhân vào và rút gọn đi ta có:

x² = 25 <=> x = -5 , x = 5

So sánh với Đk: x>o => x = 5 (t/m).

Vậy đáp số: 4, 5, 6.

II/ Bài tập tự giải

Bài 1. Chứng minh các hằng đẳng thức sau:

a) (a² – b²)² + (2ab)² = (a² + b²)²

b) (a² + b²)(c² + d²) = (ac + bd)² + (ad – bc)²

Bài 2. Cho a + b + c = 2p. Chứng minh rằng:

(p – a)² + (p – b)² + (p – c)² = a² + b² + c² – p²

Bài 3. Tìm giá trị lớn nhất của các biểu thức sau:

a) 5 – 8x – x²

b) 4x – x² + 1

Bài 4. Tính giá trị của các biểu thức:

a) x² – 10x + 26 với x = 105

b) x² + 0,2x + 0,01 với x = 0,9

Bài 5. Hiệu các bình phương của 2 số tự nhiên lẻ liên tiếp bằng 40. Tim 2 số ấy.

Đ/S: 9 và 11.

Bài 6. Tổng 3 số a, b, c bằng 9, Tổng các bình phương của chúng bằng 53. Tính ab + bc + ca.

Đ/S: ab + bc + ca = 14.

…………..

Mời các bạn tải file tài liệu để xem thêm nội dung chi tiết

Cảm ơn bạn đã xem bài viết Bài tập hằng đẳng thức lớp 8 Ôn tập Toán 8 tại Thcslytutrongst.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

 

Bài Viết Liên Quan

Hướng dẫn tắt kiểm tra chính tả trên Windows 10
Cách trình bày bài dự thi Đại sứ văn hóa đọc 2025
Phim Hit the Spot: Nội dung, diễn viên và lịch chiếu phim
Previous Post: « Dẫn chứng về ước mơ Ví dụ về ước mơ trong cuộc sống
Next Post: Wifi repeater là gì? Có nên sử dụng wifi repeater? »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Liên Kết Giới Thiệu

Copyright © 2025 · Thcslytutrongst.edu.vn - Thông Tin Kiến Thức Bổ Ích