Thcslytutrongst.edu.vn - Thông Tin Kiến Thức Bổ Ích

Chuyên đề Rút gọn biểu thức chứa căn bậc hai Lớp 9 Rút gọn biểu thức lớp 9

Tháng 10 29, 2023 by Thcslytutrongst.edu.vn

Bạn đang xem bài viết Chuyên đề Rút gọn biểu thức chứa căn bậc hai Lớp 9 Rút gọn biểu thức lớp 9 tại Thcslytutrongst.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Rút gọn biểu thức chứa căn là một trong những kiến thức trọng tâm trong chương trình Toán 9 và cũng là tài liệu vô cùng hữu ích không thể thiếu dành cho các học sinh lớp 9 chuẩn bị thi vào 10 tham khảo.

Chuyên đề rút gọn biểu thức chứa căn và bài toán liên quan bao gồm đầy đủ lý thuyết, công thức và các dạng bài tập có đáp án kèm theo. Qua đó giúp học sinh củng cố, nắm vững chắc kiến thức nền tảng, vận dụng với các bài tập cơ bản để đạt được điểm số cao trong kì thi vào lớp 10 môn Toán. Bên cạnh bài tập về đường tròn các bạn xem thêm: các định lý Hình học 9, chuyên đề quỹ tích ôn thi vào lớp 10. Nội dung chính của tài liệu bao gồm các nội dung sau:

  • Các công thức biến đổi căn thức.
  • Cách tìm điều kiện trong bài toán chứa căn thức.
  • Các dạng toán biến đổi căn thức thường gặp.
  • Phương pháp dùng ẩn phụ để đơn giải hóa bài toán.
  • Các bài toán về tính tổng dãy có quy luật.
  • Rút gọn biểu thức chứa một hay nhiều ẩn.

Mục Lục Bài Viết

Khám Phá Thêm:   Hóa 11 Bài 23: Hợp chất carbonyl Giải bài tập Hóa 11 Kết nối tri thức trang 136, 137, .. 144
  • Chuyên đề rút gọn biểu thức lớp 9
    • Các công thức biến đổi căn thức

Chuyên đề rút gọn biểu thức lớp 9

Các công thức biến đổi căn thức

Chuyên đề Rút gọn biểu thức chứa căn bậc hai Lớp 9 Rút gọn biểu thức lớp 9

2. quad sqrt{A B}=sqrt{A} cdot sqrt{B}
(Với A geq 0 ; B geq 0 )

3. sqrt{frac{A}{B}}=frac{sqrt{A}}{sqrt{B}} (Với A ≥ B> 0)

4. quad sqrt{A^{2} B}=|A| sqrt{B} quad (Với B geq 0 )

5. A sqrt{B}=sqrt{A^{2} B}(Với A geq 0 ;B geq 0)

6. A sqrt{B}=-sqrt{A^{2} B} (Với A<0 ; B geq 0)

7. sqrt{frac{A}{B}}=frac{1}{|B|} sqrt{A B} quad (Với A geq 0 ; B>0 )
begin{array}{ll}text { 8. } frac{A}{sqrt{B}} & =frac{A sqrt{B}}{B} & text { (Với } B>0 text { ) }end{array}

9 quad frac{C}{sqrt{A} pm B}=frac{C(sqrt{A} pm B)}{A-B^{2}} quad (Với A geq 0 ; mathrm{A} neq mathrm{B}^{2} )

10 quad frac{C}{sqrt{A} pm sqrt{B}}=frac{C(sqrt{A} pm sqrt{B})}{A-B} quad (Với left.A geq 0 ; B geq 0 ; mathrm{A} neq mathrm{B}right)

11 (sqrt[3]{A})^{3}=sqrt[3]{A^{3}}=A

* Cách tìm điều kiện trong bài toán chứa căn thức

1. sqrt{A} quad Đ K X Đ: A geq 0 quad Ví dụ: sqrt{x-2018} quad ĐKXĐ: quad x geq 2018

2. frac{A}{B} quad boxminus K X Đ: B neq 0 quad Ví dụ: frac{x+4}{x-7} quad ĐKXĐ: x neq 7

3. frac{A}{sqrt{B}} quad boxminus K X Đ: B>0 quad Ví dụ: frac{x+1}{sqrt{x-3}} quad ĐKXĐ: quad x>3

4. frac{sqrt{A}}{sqrt{B}} quad ĐKXĐ: A geq 0 ; B>0 quad Ví dụ: frac{sqrt{x}}{sqrt{x-3}} quad ĐKXĐ: quadleft{begin{array}{l}x geq 0 \ x>3end{array} Leftrightarrow x>3right.

5. sqrt{frac{A}{B}} quad ĐKXĐ: left[begin{array}{l}left{begin{array}{l}A leq 0 \ B<0end{array}right. \ left{begin{array}{l}A geq 0 \ B>0end{array} quad text { Ví dụ: } sqrt{frac{x+1}{x+2}}right.end{array} quadright. ĐXĐ: left[begin{array}{l}left{begin{array}{l}x+1 leq 0 \ x+2<0end{array}right. \ left{begin{array}{l}x+1 geq 0 \ x+2>0end{array}right.end{array} Leftrightarrowleft[begin{array}{l}x<-2 \ x geq 1end{array}right.right.

Cho a >0 ta có:

6. x^{2}>a Leftrightarrowleft[begin{array}{l}x>sqrt{a} \ x<-sqrt{a}end{array} quadright. Ví dụ: x^{2}>1 Leftrightarrowleft[begin{array}{l}x>sqrt{a} \ x<-sqrt{a}end{array}right.

*Dạng 1: Các bài toán biến đổi căn thức thường gặp

Thí dụ 1. (Trích đề thi HSG huyện Nghi Xuân Hà Tĩnh)

Tính giá trị của biểu thức: A=sqrt{6-2 sqrt{5}}+sqrt{14-6 sqrt{5}}

Lời giải

Ta có: mathrm{A}=sqrt{6-2 sqrt{5}}+sqrt{14-6 sqrt{5}}=sqrt{(sqrt{5}-1)^{2}}+sqrt{(3-sqrt{5})^{2}}=sqrt{5}-1+3-sqrt{5}=2

* Thí dụ 2. (Trích đề thi HSG tỉnh Lâm Đồng năm 2010-2011)

Cho mathrm{E}=(sqrt[3]{2}+1) sqrt[3]{frac{sqrt[3]{2}-1}{3}}. Chứng minh rằng E là số nguyên

Lời giải

Ta có:

begin{aligned}

E &=sqrt[3]{(sqrt[3]{2}+1)^{3} cdot frac{(sqrt[3]{2}-1)}{3}}=sqrt[3]{[2+1+3 sqrt[2]{2}(sqrt[3]{2}+1)] frac{sqrt[3]{2}-1}{3}}=sqrt{(8-3 sqrt{7})^{2}}-sqrt{(8+3 sqrt{7})^{2}} \

&=sqrt[3]{(1+sqrt[3]{2}+sqrt[3]{4})(sqrt[3]{2}-1)}=sqrt[3]{2-1}=1

end{aligned}

Vậy E là số nguyên

• Thí dụ 3. (Trích đề thi chọn HSG tỉnh Hòa Bình Năm 2010-2011)

Rút gọn: A=frac{sqrt{sqrt[4]{8}+sqrt{sqrt{2}-1}}-sqrt{sqrt[4]{8}-sqrt{sqrt{2}-1}}}{sqrt{sqrt[4]{8}-sqrt{sqrt{2}+1}}}.

Lời giải

Đặt mathrm{A}=frac{mathrm{T}}{mathrm{M}}. Ta có mathrm{T}>0 nên mathrm{T}=sqrt{mathrm{T}^{2}}

begin{aligned}

& text { Xét } mathrm{T}^{2}=(sqrt[4]{8}+sqrt{sqrt{2}-1})-2 cdot sqrt{sqrt[4]{8}+sqrt{sqrt{2}-1}} cdot sqrt{sqrt[4]{8}-sqrt{sqrt{2}-1}}+(sqrt[4]{8}-sqrt{sqrt{2}-1}) \

&=2 sqrt[4]{8}-2 sqrt{sqrt{8}-(sqrt{2}-1)} \

&=2 sqrt[4]{8}-2 sqrt{sqrt{2}+1} \

&=2(sqrt[4]{8}-sqrt{sqrt{2}+1}) \

Rightarrow & mathrm{T}=sqrt{2(sqrt[4]{8}-sqrt{sqrt{2}+1})} \

Rightarrow & mathrm{A}=sqrt{2}

end{aligned}

Thí dụ 4. (Trích đề thi HSG Phú Thọ năm 2012-2013)

Rút gọn biểu thức:mathrm{A}=sqrt{frac{2 sqrt{10}+sqrt{30}-2 sqrt{2}-sqrt{6}}{2 sqrt{10}-2 sqrt{2}}}: frac{2}{sqrt{3}-1}

Lời giải

Ta có:sqrt{frac{2 sqrt{10}+sqrt{30}-2 sqrt{2}-sqrt{6}}{2 sqrt{10}-2 sqrt{2}}}: frac{2}{sqrt{3}-1}=

……………..

Cảm ơn bạn đã xem bài viết Chuyên đề Rút gọn biểu thức chứa căn bậc hai Lớp 9 Rút gọn biểu thức lớp 9 tại Thcslytutrongst.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

 

Bài Viết Liên Quan

Hướng dẫn tắt kiểm tra chính tả trên Windows 10
Cách trình bày bài dự thi Đại sứ văn hóa đọc 2025
Phim Hit the Spot: Nội dung, diễn viên và lịch chiếu phim
Previous Post: « Quýt bao nhiêu calo? Cách giảm cân hiệu quả với quýt
Next Post: Xiaomi ra mắt bàn ủi hơi nước cầm tay, diệt khuẩn 99,9%, giá 330.000đ »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Liên Kết Giới Thiệu

Copyright © 2025 · Thcslytutrongst.edu.vn - Thông Tin Kiến Thức Bổ Ích