Thcslytutrongst.edu.vn - Thông Tin Kiến Thức Bổ Ích

Công thức biến đổi tích thành tổng Công thức biến tích thành tổng

Tháng 9 24, 2023 by Thcslytutrongst.edu.vn

Bạn đang xem bài viết Công thức biến đổi tích thành tổng Công thức biến tích thành tổng tại Thcslytutrongst.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Công thức biến đổi tích thành tổng là tài liệu vô cùng hữu ích mà Thcslytutrongst.edu.vn muốn giới thiệu đến các bạn lớp 12 cùng tham khảo.

Công thức biến đổi tích thành tổng bao gồm công thức biến đổi, cách ghi nhớ và các ví dụ minh họa có đáp án kèm theo. Qua công thức biến tích thành tổng giúp các bạn học sinh lớp 12 có thêm nhiều tư liệu tham khảo, trau dồi kiến thức để giải nhanh được các bài tập lượng giác. Ngoài ra các bạn xem thêm: 6 Công thức tính lãi suất, Cách tính số phức liên hợp.

Mục Lục Bài Viết

  • Công thức biến đổi tích thành tổng
    • 1. Công thức biến đổi tích thành tổng
    • 2. Cách ghi nhớ Công thức biến đổi tích thành tổng
    • 3. Ví dụ công thức biến đổi tích thành tổng

Công thức biến đổi tích thành tổng

1. Công thức biến đổi tích thành tổng

begin{aligned}
&cos a cdot cos b=frac{1}{2}[cos (a+b)+cos (a-b)] \
&sin a cdot sin b=-frac{1}{2}[cos (a+b)-cos (a-b)] \
&sin a cdot cos b=frac{1}{2}[sin (a+b)+sin (a-b)]
end{aligned}

2. Cách ghi nhớ Công thức biến đổi tích thành tổng

Tính sin tổng ta lập tổng sin cô

Tính cô tổng lập ta hiệu đôi cô đôi chàng

còn tính tan tử + đôi tan (hay là: tan tổng lập tổng 2 tan)

1 trừ tan tích mẫu mang thương rầu

Khám Phá Thêm:   Tiếng Anh 7 Unit 11: Getting Started Soạn Anh 7 trang 114, 115 sách Kết nối tri thức với cuộc sống

Nếu gặp hiệu ta chớ lo âu,

Đổi trừ thành cộng ghi sâu trong lòng

Một cách nhớ khác của câu Tang mình + với tang ta, bằng sin 2 đứa trên cos ta cos mình… là

tangx + tangy: tình mình cộng lại tình ta, sinh ra hai đứa con mình con ta

3. Ví dụ công thức biến đổi tích thành tổng

Để làm bài tập dạng này, ta phải nắm vững công thức biến đổi tích thành tổng và áp dụng để biến đổi.

Ví dụ 1: Tính giá trị của biểu thức mathrm{A}=sin frac{13 pi}{24} sin frac{5 pi}{24}

Hướng dẫn giải:

begin{aligned}
mathrm{A} &=sin frac{13 pi}{24} sin frac{5 pi}{24} \
&=frac{1}{2}left[cos left(frac{13 pi}{24}-frac{5 pi}{24}right)-cos left(frac{13 pi}{24}+frac{5 pi}{24}right)right] \
&=frac{1}{2}left(cos frac{pi}{3}-cos frac{3 pi}{4}right) \
&=frac{1}{2}left(frac{1}{2}-left(-frac{sqrt{2}}{2}right)right)=frac{1+sqrt{2}}{4}
end{aligned}

Ví dụ 2: Biến đổi thành tổng: A=2 sin x cdot sin 2 x cdot sin 3 x

Hướng dẫn giải:

begin{aligned}
mathrm{A} &=2 sin x cdot sin 2 x cdot sin 3 x \
&=2 cdot frac{1}{2}(cos (x-2 x)-cos (x+2 x)) cdot sin 3 x \
&=(cos (-x)-cos 3 x) cdot sin 3 x \
&=cos x cdot sin 3 x-cos 3 x cdot sin 3 x \
&=frac{1}{2}(sin (3 x-x)+sin (3 x+x))-frac{1}{2} sin 6 x \
&=frac{1}{2} sin 2 x+frac{1}{2} sin 4 x-frac{1}{2} sin 6 x
end{aligned}

Ví dụ 3: Cho cos 2 alpha=frac{sqrt{5}}{5}, alpha inleft[-frac{pi}{2} ; 0right] . Tính mathrm{P}=sin a cdot cos 3 mathrm{a}+cos ^{2} mathrm{a}

Hướng dẫn giải:

Ta có:

begin{aligned}
&sin ^{2} 2 alpha=1-cos ^{2} 2 alpha=frac{4}{5} Rightarrow sin 2 alpha=pm frac{2}{sqrt{5}} \
&text { Vì } alpha inleft[-frac{pi}{2} ; 0right] Rightarrow 2 alpha in[-pi ; 0] text { nên } sin 2 alpha<0
end{aligned}

Do đó sin 2 alpha=-frac{2}{sqrt{5}}

Ta có:

begin{aligned}
mathrm{P} &=sin alpha cos 3 alpha+cos ^{2} alpha \
&=frac{1}{2}(sin (alpha-3 alpha)+sin (alpha+3 alpha))+frac{1+cos 2 alpha}{2} \
&=frac{1}{2}(sin (-2 alpha)+sin 4 alpha)+frac{1+cos 2 alpha}{2} \
&=frac{1}{2}(-sin 2 alpha+2 sin 2 alpha cos 2 alpha)+frac{1+cos 2 alpha}{2} \
&=frac{1}{2}left(-left(-frac{2}{sqrt{5}}right)+2left(-frac{2}{sqrt{5}}right) cdot frac{sqrt{5}}{5}right)+frac{1+frac{sqrt{5}}{5}}{2}
end{aligned}

Ví dụ 4: Rút gọn biểu thức lượng giác sau:

begin{aligned}
&mathrm{A}=4 sin frac{mathrm{x}}{3} cdot sin left(frac{mathrm{x}+pi}{3}right) cdot sin left(frac{mathrm{x}-pi}{3}right) \
&mathrm{B}=4 cos frac{mathrm{x}}{3} cdot cos left(frac{mathrm{x}+pi}{3}right) cdot cos left(frac{mathrm{x}-pi}{3}right)
end{aligned}

Hướng dẫn giải:

begin{aligned}
mathrm{A} &=4 sin frac{x}{3} cdot sin left(frac{x+pi}{3}right) cdot sin left(frac{x-pi}{3}right) \
&=4 cdot sin frac{x}{3} cdot frac{1}{2}left[cos left(frac{x+pi}{3}-frac{x-pi}{3}right)-cos left(frac{x+pi}{3}+frac{x-pi}{3}right)right] \
&=2 sin frac{x}{3}left(cos frac{2 pi}{3}-cos frac{2 x}{3}right) \
&=2 sin frac{x}{3}left(-frac{1}{2}-cos frac{2 x}{3}right) \
&=-frac{1}{2} cdot 2 sin frac{x}{3}-2 sin frac{x}{3} cos frac{2 x}{3} \
&=-sin frac{x}{3}-2 cdot frac{1}{2}left(sin left(frac{x}{3}-frac{2 x}{3}right)+sin left(frac{x}{3}+frac{2 x}{3}right)right)
end{aligned}

Cảm ơn bạn đã xem bài viết Công thức biến đổi tích thành tổng Công thức biến tích thành tổng tại Thcslytutrongst.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

 

Bài Viết Liên Quan

Hướng dẫn tắt kiểm tra chính tả trên Windows 10
Cách trình bày bài dự thi Đại sứ văn hóa đọc 2025
Phim Hit the Spot: Nội dung, diễn viên và lịch chiếu phim
Previous Post: « Bộ sưu tập hình trái tim 3D chất lượng Full 4K với hơn 999+ hình.
Next Post: Cách gộp nhiều file Word thành một file duy nhất »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Liên Kết Giới Thiệu

Copyright © 2025 · Thcslytutrongst.edu.vn - Thông Tin Kiến Thức Bổ Ích