Thcslytutrongst.edu.vn - Thông Tin Kiến Thức Bổ Ích

Công thức cấp số cộng: Lý thuyết và bài tập Công thức tính cấp số cộng

Tháng 9 30, 2023 by Thcslytutrongst.edu.vn

Bạn đang xem bài viết Công thức cấp số cộng: Lý thuyết và bài tập Công thức tính cấp số cộng tại Thcslytutrongst.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Cấp số cộng là 1 dãy số (hữu hạn hoặc vô hạn) thỏa mãn điều kiện: Kể từ số hạng thứ 2 trở đi đều bằng số hạng đứng trước nó cộng với 1 số không đổi. Vậy công thức cấp số cộng là gì? Điều kiện thành lập cấp số cộng như thế nào? Mời các bạn cùng theo dõi bài viết dưới đây nhé.

Mục Lục Bài Viết

  • I. Công thức tổng quát của cấp số cộng
  • II. Số hạng thứ n của cấp số cộng
  • III.Điều kiện lập thành cấp số cộng
  • IV. Tổng của n số hạng đầu của cấp số cộng
  • V. Phân dạng bài tập cấp số cộng
  • VI. Bài tập cấp số cộng

I. Công thức tổng quát của cấp số cộng

left( {{U_n}} right) = left{ {begin{array}{*{20}{c}}
  {{u_1} = a} \ 
  {{u_{n + 1}} = {u_n} + d} 
end{array}left( {n in mathbb{N}*} right)} right.d là công sai.

II. Số hạng thứ n của cấp số cộng

{u_{n + 1}} = {u_1} + left( {n - 1} right)d Rightarrow d = frac{{{u_{n + 1}} - {u_1}}}{{n - 1}}

III.Điều kiện lập thành cấp số cộng

Ba số hạng {u_{n - 1}},{u_n},{u_{n + 1}} là 3 số hạng liên tiếp của cấp số cộng khi {u_n} = frac{{{u_{n - 1}} + {u_{n + 1}}}}{2} với n geqslant 1

IV. Tổng của n số hạng đầu của cấp số cộng

Tổng riêng thứ n xác định bởi công thức:

S = {u_1} + {u_2} + ... + {u_n} = frac{{nleft( {{u_1} + {u_n}} right)}}{2} = frac{{nleft[ {2{u_1} + left( {n - 1} right)d} right]}}{2}

Chú ý

a. Dãy số left( {{U_n}} right) là một cấp số cộng, công sai d Leftrightarrow {u_{n + 1}} - {u_n} = d không phụ thuộc vào n

c. Để xác định một cấp số cộng, ta cần xác định số hạng đầu và công sai. Do đó, ta thường biểu diễn giả thiết bài toán qua {u_1},d

Khám Phá Thêm:   Văn mẫu lớp 9: Tóm tắt văn bản Ý nghĩa văn chương (5 mẫu) Những bài văn mẫu lớp 9

V. Phân dạng bài tập cấp số cộng

Dạng 1: Nhận biết cấp số cộng

Bước 1: Tìm công sai khi biết hai số hạng liên tiếp nhau theo công thức:d = {u_n} – {u_{n – 1}},forall n ge 2.

Bước 2: Kết luận:

  • Nếu d là số không đổi thì dãy left( {{u_n}} right) là CSC.
  • Nếu d thay đổi theo n thì dãy left( {{u_n}} right) không là CSC.

Dạng 2: Tìm công sai từ công thức cấp số cộng

Sử dụng các tính chất của CSC ở trên, sau đó biến đổi để tính công sai d

Dạng 3: Tìm số hạng của cấp số cộng

Sử dụng công thức tính số hạng tổng quát {u_n} = {u_1} + left( {n – 1} right)d

Dạng 4: Tính tổng cấp số cộng của n số hạng đầu tiên

Ta vận dụng công thức tính tổng cấp số cộng:

begin{array}{l} {S_n} = {u_1} + {u_2} + … + {u_n}\ = frac{{left( {{u_1} + {u_n}} right).n}}{2}\ = frac{{left[ {2{u_1} + left( {n – 1} right)d} right].n}}{2} end{array}

Dạng 5: Tìm cấp số cộng

  • Tìm các yếu tố xác định một cấp số cộng như: số hạng đầu {u_1}, công sai d.
  • Tìm công thức cho số hạng tổng quát {u_n} = {u_1} + left( {n – 1} right)d.

VI. Bài tập cấp số cộng

Bài 1. Cho cấp cấp số cộng (u_n) với u_1 = 3 và u_2 = 9. Công sai của cấp số cộng đã cho bằng

Gợi ý

Công sai của cấp số cộng đã cho bằng {u_2} – {u_1} = 6

Bài 2: Cho một CSC có{u_1} = – 3;,,{u_6} = 27. Tìm d ?

Gợi ý

begin{array}{l} {u_6} = 27\ Leftrightarrow {u_1} + 5d = 27\ Leftrightarrow – 3 + 5d = 27\ Leftrightarrow d = 6 end{array}

Bài 3: Cho một CSC có {u_1} = frac{1}{3};,,{u_8} = 26 Tìm d?

Gợi ý

begin{array}{l} {u_8} = 26 Leftrightarrow {u_1} + 7d = 26\ Leftrightarrow frac{1}{3} + 7d = 26\ Leftrightarrow d = frac{{11}}{3} end{array}

Bài 4: Cho CSC ({u_n})thỏa:left{ begin{array}{l} {u_5} + 3{u_3} – {u_2} = – 21\ 3{u_7} – 2{u_4} = – 34 end{array} right.

1. Tính số hạng thứ 100 của cấp số.

2. Tính tổng cấp số cộng của 15 số hạng đầu.

3. Tính S = {u_4} + {u_5} + … + {u_{30}}.

Gợi ý

Từ giả thiết bài toán, ta có:

begin{array}{l} left{ begin{array}{l} {u_1} + 4d + 3({u_1} + 2d) – ({u_1} + d) = – 21\ 3({u_1} + 6d) – 2({u_1} + 3d) = – 34 end{array} right.\ Leftrightarrow left{ begin{array}{l} {u_1} + 3d = – 7\ {u_1} + 12d = – 34 end{array} right. Leftrightarrow left{ begin{array}{l} {u_1} = 2\ d = – 3 end{array} right. end{array}

1. Số hạng thứ 100 của cấp số:{u_{100}} = {u_1} + 99d = – 295

2. Tổng của 15 số hạng đầu: {S_{15}} = frac{{15}}{2}left[ {2{u_1} + 14d} right] = – 285

Khám Phá Thêm:   Lịch sử Địa lí lớp 4 Bài 16: Một số nét văn hóa ở vùng Duyên hải miền Trung Giải Lịch sử Địa lí lớp 4 sách Chân trời sáng tạo

3. Ta có: begin{array}{l} S = {u_4} + {u_5} + … + {u_{30}} = frac{{27}}{2}left[ {2{u_4} + 26d} right]\ = 27left( {{u_1} + 16d} right) = – 1242 end{array}

Chú ý: Ta có thể tính S theo cách sau:

S = {S_{30}} – {S_3} = 15left( {2{u_1} + 29d} right) – frac{3}{2}left( {2{u_1} + 2d} right) = – 1242.

Cảm ơn bạn đã xem bài viết Công thức cấp số cộng: Lý thuyết và bài tập Công thức tính cấp số cộng tại Thcslytutrongst.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

 

Bài Viết Liên Quan

Hướng dẫn tắt kiểm tra chính tả trên Windows 10
Cách trình bày bài dự thi Đại sứ văn hóa đọc 2025
Phim Hit the Spot: Nội dung, diễn viên và lịch chiếu phim
Previous Post: « 5 sai lầm thường gặp khi nấu nước dùng làm mất đi độ ngon, thanh tao
Next Post: Có nên mua tai nghe cho bà bầu không? Chọn tai nghe an toàn cho bà bầu »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Liên Kết Giới Thiệu

Copyright © 2025 · Thcslytutrongst.edu.vn - Thông Tin Kiến Thức Bổ Ích