Thcslytutrongst.edu.vn - Thông Tin Kiến Thức Bổ Ích

Công thức tính diện tích tam giác Diện tích tam giác vuông, đều, cân

Tháng Chín 19, 2023 by Thcslytutrongst.edu.vn

Bạn đang xem bài viết Công thức tính diện tích tam giác Diện tích tam giác vuông, đều, cân tại Thcslytutrongst.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Tam giác là một hình cơ bản và khá thường nhật trong hình học, là hình gồm ba điểm không thẳng hàng và ba cạnh là ba đoạn thẳng nối các đỉnh với nhau.

Vậy công thức tính diện tích tam giác là gì? Diện tích tam giác đều, diện tích tam giác vuông tính như thế nào? Mời các bạn hãy cùng Thcslytutrongst.edu.vn theo dõi bài viết dưới đây nhé.

Mục Lục Bài Viết

  • I. Công thức tính diện tích tam giác
    • 1. Tính diện tích tam giác thường
    • 2. Tính diện tích tam giác cân
    • 3. Tính diện tích tam giác đều
    • 4. Tính diện tích tam giác vuông
    • 5. Tính diện tích tam giác vuông cân
  • II. Các dạng bài tập về diện tích hình tam giác
  • III. Bài tập tự luyện diện tích tam giác

I. Công thức tính diện tích tam giác

1. Tính diện tích tam giác thường

Tam giác ABC có ba cạnh a, b, c, ha là đường cao từ đỉnh A như hình vẽ:

Công thức tính diện tích tam giác Diện tích tam giác vuông, đều, cân

a. Công thức chung

Diện tích tam giác bằng ½ tích của chiều cao hạ từ đỉnh với độ dài cạnh đối diện của đỉnh đó.

Công thức tính diện tích tam giác chung

Ví dụ:

Tính diện tích hình tam giác có độ dài đáy là 5m và chiều cao là 24dm.

Giải: Chiều cao 24dm = 2,4m

Diện tích tam giác là

S=frac{5times2.4}{2}=6 m^2

Xem thêm: Công thức tính diện tích hình vuông

b. Tính diện tích tam giác khi biết một góc

Diện tích tam giác bằng ½ tích hai cạnh kề với sin của góc hợp bởi hai cạnh đó trong tam giác.

Công thức tính diện tích tam giác khi biết một góc

Ví dụ:

Tam giác ABC có cạnh BC = 7, cạnh AB = 5, góc B bằng 60 độ. Tính diện tích tam giác ABC?

c. Tính diện tích tam giác khi biết 3 cạnh bằng công thức Heron.

Khám Phá Thêm:   Khoa học lớp 4 Bài 6: Gió, bão và phòng chống bão Giải Khoa học lớp 4 sách Kết nối tri thức với cuộc sống

Sử dụng công thức Heron đã được chứng minh:

Công thức Heron

Với p là nửa chu vi tam giác:

Công thức nửa chu vi tam giác

Có thể viết lại bằng công thức:

Công thức Heron tính diện tích tam giác

Ví dụ:

Tính diện tích hình tam giác có độ dài cạnh AB = 8, AC = 7, CB = 9

Giải:

Nửa chu vi tam giác ABC là

p=frac{AB + AC +BC}{2}=frac{8 + 7 + 9}{2}=12

Áp dụng công thức hero ta có

S = sqrt{pleft(p-ABright)left(p-ACright)left(p-BCright)}

=sqrt{12left(12-8right)left(12-7right)left(12-9right)}

=12sqrt{5}

d. Tính diện tích bằng bán kính đường tròn ngoại tiếp tam giác (R).

Công thức tính diện tích bằng bán kính đường tròn ngoại tiếp tam giác

Cách khác:

S_{ABC} = 2.R^{2}.sinhat{A}.sinhat{B}.sinhat{C}

Lưu ý: Cần phải chứng minh được R là bán kính đường tròn ngoại tiếp tam giác.

Ví dụ:

Cho tam giác ABC, độ dài các cạnh a = 6, b = 7, c = 5, R = 3 (R là bán kính đường tròn ngoại tiếp tam giác ABC). Tính diện tích của tam giác ABC.

Giải:

S=frac{abc}{4R}= frac{6times7times5}{4times3sqrt{2}}=frac{210}{12sqrt{2}}=frac{35sqrt{2}}{4}

e. Tính diện tích bằng bán kính đường tròn nội tiếp tam giác (r).

Công thức tính diện tích bằng bán kính đường tròn nội tiếp tam giác

  • p: Nửa chu vi tam giác.
  • r: Bán kính đường tròn nội tiếp.

Ví dụ: Tính diện tích tam giác ABC biết độ dài các cạnh AB = 20, AC = 21, BC = 15, r = 5 (r là bán kính đường tròn nội tiếp tam giác ABC).

Giải:

Nửa chu vi tam giác là:

p=frac{AB + AC +BC}{2}=frac{20+21+15}{2}=28

r= 5

Diện tích tam giác là:

S=ptimes r=28times5=140

2. Tính diện tích tam giác cân

Tam giác cân ABC có ba cạnh, a là độ dài cạnh đáy, b là độ dài hai cạnh bên, ha là đường cao từ đỉnh A như hình vẽ:

Áp dụng công thức tính diện tích thường, ta có công thức tính diện tích tam giác cân:

Công thức tính diện tích tam giác cân

3. Tính diện tích tam giác đều

Tam giác đều ABC có ba cạnh bằng nhau, a là độ dài các cạnh như hình vẽ:

Áp dụng định lý Heron để suy ra, ta có công thức tính diện tích tam giác đều:

Công thức tính diện tích tam giác đều

Xem thêm: Công thức tính chu vi, diện tích tam giác

4. Tính diện tích tam giác vuông

Tam giác ABC vuông tại B, a, b là độ dài hai cạnh góc vuông:

Áp dụng công thức tính diện tích thường cho diện tích tam giác vuông với chiều cao là 1 trong 2 cạnh góc vuông và cạnh đáy là cạnh còn lại.

Khám Phá Thêm:   Pháp luật 10 Bài 17: Pháp luật và đời sống Giáo dục Kinh tế và Pháp luật 10 sách Chân trời sáng tạo trang 116

Công thức tính diện tích tam giác vuông:

Công thức tính diện tích tam giác vuông

5. Tính diện tích tam giác vuông cân

Tam giác ABC vuông cân tại A, a là độ dài hai cạnh góc vuông:

Áp dụng công thức tính diện tích tam giác vuông cho diện tích tam giác vuông cân với chiều cao và cạnh đáy bằng nhau, ta có công thức:

Tính diện tích tam giác vuông cân

II. Các dạng bài tập về diện tích hình tam giác

Dạng 1: Tính diện tích tam giác khi biết độ dài đáy và chiều cao

Ví dụ 1: Tính diện tích tam giác thường và tam giác vuông có:

a) Độ dài đáy bằng 32cm và chiều cao bằng 25cm.

b) Hai cạnh góc vuông có độ dài lần lượt là 3dm và 4dm.

Bài làm

a) Diện tích hình tam giác là:

32 x 25 : 2 = 400 (cm2)

b) Diện tích hình tam giác là:

3 x 4 : 2 = 6 (dm2)

Đáp số: a) 400cm2

b) 6dm2

Dạng 2: Tính độ dài đáy khi biết diện tích và chiều cao

+ Từ công thức tính diện tích, ta suy ra công thức tính độ dài đáy: a = S x 2 : h

Ví dụ 1: Tính độ dài cạnh đáy của hình tam giác có chiều cao bằng 80cm và diện tích bằng 4800cm2.

Bài làm

Độ dài cạnh đáy của hình tam giác là:

4800 x 2 : 80 = 120 (cm)

Đáp số: 120cm

Ví dụ 2: Cho hình tam giác có diện tích 5/8m2 chiều cao là 1/2 m. Tính độ dài cạnh đáy của tam giác đó?

Bài làm

Độ dài cạnh đáy của tam giác là:

frac{5}{8} times 2:frac{1}{2} = frac{{20}}{8} = frac{5}{2}(m)

Đáp số: 5/2m

Dạng 3: Tính chiều cao khi biết diện tích và độ dài đáy

+ Từ công thức tính diện tích, ta suy ra công thức tính chiều cao: h = S x 2 : a

Ví dụ 1: Tính chiều cao của hình tam giác có độ dài cạnh đáy bằng 50cm và diện tích bằng 1125cm2.

Bài làm

Chiều cao của hình tam giác là:

1125 x 2 : 50 = 45 (cm)

Đáp số: 45cm

Dạng bài tập nâng cao

Cho tam giác AOB vuông tại O với đường cao OM (h.131). Hãy giải thích vì sao ta có đẳng thức:

Khám Phá Thêm:   Thử "Đo độ đẹp trai" với How-Dude.me

AB.OM = OA.OB

Bài 17

Gợi ý đáp án:

Ta có cách tính diện tích tam giác AOB với đường cao OM và cạnh đáy AB:

S = dfrac{{OM.AB}}{2}

Ta lại có cách tính diện tích tam giác AOB vuông với hai cạnh góc vuông OA, OB là

S = dfrac{{OA.OB}}{2}

Rightarrow dfrac{{OM.AB}}{2} = dfrac{{OA.OB}}{2},(=S)

Rightarrow OM.AB = OA.OB.

III. Bài tập tự luyện diện tích tam giác

Câu 1:

Tính diện tích hình tam giác có:

a) Độ dài đáy là 32cm và chiều cao là 22cm;

b) Độ dài đáy là 2,5 cm và chiều cao là 1,2cm;

Câu 2:

Tính diện tích hình tam giác có:

a) Độ dài đáy là 45cm và chiều cao là 2,4dm;

b) Độ dài đáy là 1,5 m và chiều cao là 10,2dm;

Câu 3:

Tính diện tích hình tam giác có:

a) Độ dài đáy là 3/4m và chiều cao là 1/2m;

b) Độ dài đáy là 4/5 m và chiều cao là 3,5 dm;

Câu 4:

Tính diện tích hình tam giác vuông có độ dài 2 cạnh góc vuông lần lượt là:

a) 35cm và 15 cm.

b) 3,5 m và 15 dm.

Câu 5:

Tính diện tích hình tam giác MDC. Biết hình chữ nhật ABCD có AB = 25 cm, BC = 16cm.

Câu 6:

Tính diện tích hình tam giác MDN. Biết hình vuông ABCD có cạnh 20cm và AM = MB , BN = NC.

Trên đây là toàn bộ công thức, cách tính diện tích tam giác thường, diện tích tam giác đều, cách tính diện tích tam giác vuông cân…. Hy vọng qua tài liệu này các bạn có thêm nhiều gợi ý ôn tập, củng cố kiến thức để biết cách giải các bài tập về tam giác.

Cảm ơn bạn đã xem bài viết Công thức tính diện tích tam giác Diện tích tam giác vuông, đều, cân tại Thcslytutrongst.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

 

Bài Viết Liên Quan

Văn khấn lễ khai trương đầu năm Quý Mão 2023
Văn khấn lễ khai trương đầu năm Quý Mão 2023
Toán lớp 5: Luyện tập trang 94 Giải Toán lớp 5 trang 94
Toán lớp 5: Luyện tập trang 94 Giải Toán lớp 5 trang 94
Toán lớp 4 Bài 65: Quy đồng mẫu số các phân số Giải Toán lớp 4 Chân trời sáng tạo Tập 2 trang 52, 53
Toán lớp 4 Bài 65: Quy đồng mẫu số các phân số Giải Toán lớp 4 Chân trời sáng tạo Tập 2 trang 52, 53
Bài viết trước: « Bộ sưu tập hình cắt tóc cực chất với hơn 999+ hình ảnh độ phân giải 4K.
Bài viết tiếp theo: Top 10 món ăn nhất định phải thử qua khi đi du lịch tại Cần Giờ »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Copyright © 2023 · Thcslytutrongst.edu.vn - Thông Tin Kiến Thức Bổ Ích