Thcslytutrongst.edu.vn - Thông Tin Kiến Thức Bổ Ích

Giải Toán 9 Bài 8: Rút gọn biểu thức chứa căn thức bậc hai Giải SGK Toán 9 Tập 1 (trang 32, 33, 34)

Tháng Mười Một 15, 2023 by Thcslytutrongst.edu.vn

Bạn đang xem bài viết Giải Toán 9 Bài 8: Rút gọn biểu thức chứa căn thức bậc hai Giải SGK Toán 9 Tập 1 (trang 32, 33, 34) tại Thcslytutrongst.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Giải Toán 9 Bài 8: Rút gọn biểu thức chứa căn thức bậc hai giúp các em học sinh lớp 9 tham khảo phương pháp giải phần câu hỏi cùng với 9 bài tập SGK Toán 9 tập 1 trang 32, 33, 34 tập 1.

Giải Toán 9 trang 32, 33, 34 được biên soạn rất chi tiết, hướng dẫn các em phương pháp giải rõ ràng để các em hiểu được bài Rút gọn biểu thức chứa căn thức bậc hai nhanh nhất. Đồng thời qua giải Toán lớp 9 trang 32, 33, 34 học sinh tự rèn luyện củng cố, bồi dưỡng và kiểm tra vốn kiến thức toán của bản thân mình để học tốt chương 1 Căn bậc 2 căn bậc 3. Vậy sau đây là giải Toán lớp 9 trang 32, 33, 34 tập 1, mời các bạn cùng tải tại đây.

Mục Lục Bài Viết

  • Trả lời câu hỏi Bài 8 trang 32
    • Câu 1
    • Câu 2
    • Câu hỏi 3
  • Giải bài tập toán 9 trang 32, 33, 34 tập 1
    • Bài 58 (trang 32 SGK Toán 9 Tập 1)
    • Bài 59 (trang 32 SGK Toán 9 Tập 1)
    • Bài 60 (trang 33 SGK Toán 9 Tập 1)
    • Bài 61 (trang 33 SGK Toán 9 Tập 1)
  • Giải bài tập toán 9 trang 33: Luyện tập
    • Bài 62 (trang 33 SGK Toán 9 Tập 1)
    • Bài 63 (trang 33 SGK Toán 9 Tập 1)
    • Bài 64 (trang 33 SGK Toán 9 Tập 1)
    • Bài 65 (trang 34 SGK Toán 9 Tập 1)
    • Bài 66 (trang 34 SGK Toán 9 Tập 1)
  • Lý thuyết Rút gọn biểu thức chứa căn thức bậc hai
    • Các công thức biến đổi căn thức
Khám Phá Thêm:   Văn mẫu lớp 9: Cảm nhận khổ 3, 4 bài thơ Đoàn thuyền đánh cá Dàn ý & 3 bài văn mẫu lớp 9 hay nhất

Trả lời câu hỏi Bài 8 trang 32

Câu 1

Rút gọn: Giải Toán 9 Bài 8: Rút gọn biểu thức chứa căn thức bậc hai Giải SGK Toán 9 Tập 1 (trang 32, 33, 34)

Phương pháp giải:

Sử dụng linh hoạt các công thức về căn thức như đưa thừa số ra ngoài dấu căn, khai phương 1 tích để rút gọn

Lời giải chi tiết:

3sqrt {5a} - sqrt {20a} + 4sqrt {45a} + sqrt a

= 3sqrt 5 .sqrt a - sqrt {4.5} sqrt a + 4sqrt {9.5} sqrt a + sqrt a

= 3sqrt 5 sqrt a - 2sqrt 5 sqrt a + 12sqrt 5 sqrt a + sqrt a

= sqrt a left( {3sqrt 5 - 2sqrt 5 + 12sqrt 5 + 1} right)

= left( {13sqrt 5 + 1} right)sqrt a

Câu 2

Chứng minh đẳng thức dfrac{{asqrt a + bsqrt b }}{{sqrt a + sqrt b }} - sqrt {ab} = {left( {sqrt a - sqrt b } right)^2} với a > 0,b > 0.

Lời giải chi tiết:

Ta có VT = dfrac{{asqrt a + bsqrt b }}{{sqrt a + sqrt b }} - sqrt {ab}

= dfrac{{{{left( {sqrt a } right)}^3} + {{left( {sqrt b } right)}^3}}}{{sqrt a + sqrt b }} - sqrt {ab}

= dfrac{{left( {sqrt a + sqrt b } right)left( {a - sqrt {ab} + b} right)}}{{sqrt a + sqrt b }} - sqrt {ab}

= {left( {sqrt a } right)^2} - 2sqrt {ab} + {left( {sqrt b } right)^2}

= {left( {sqrt a - sqrt b } right)^2} = VP (đpcm).

(Chú ý: VT là vế trái, VP là vế phải)

Câu hỏi 3

: Rút gọn các biểu thức sau:

a. frac{{{x^2} - 3}}{{x + sqrt 3 }}

b. frac{{1 - asqrt a }}{{1 - sqrt a }} với a ≥ 0 và a ≠ 1

Gợi ý đáp án

a. Điều kiện xác định x ne  - sqrt 3

frac{{{x^2} - 3}}{{x + sqrt 3 }} = frac{{{x^2} - {{left( {sqrt 3 } right)}^2}}}{{x + sqrt 3 }} = frac{{left( {x - sqrt 3 } right)left( {x + sqrt 3 } right)}}{{x + sqrt 3 }} = x - sqrt 3

b. Ta có:

frac{{1 - asqrt a }}{{1 - sqrt a }} = frac{{{1^3} - sqrt {{a^3}} }}{{1 - sqrt a }} = frac{{left( {1 - sqrt a } right)left( {1 + sqrt a  + a} right)}}{{1 - sqrt a }} = 1 + sqrt a  + a

Giải bài tập toán 9 trang 32, 33, 34 tập 1

Bài 58 (trang 32 SGK Toán 9 Tập 1)

Rút gọn các biểu thức sau:

a. 5sqrt{dfrac{1}{5}}+dfrac{1}{2}sqrt{20}+sqrt{5}

b. sqrt{dfrac{1}{2}}+sqrt{4,5}+sqrt{12,5};

c. sqrt{20}-sqrt{45}+3sqrt{18}+sqrt{72};

d. 0,1.sqrt{200}+2.sqrt{0,08}+0,4.sqrt{50}

Gợi ý đáp án:

a. 5sqrt{dfrac{1}{5}}+dfrac{1}{2}sqrt{20}+sqrt{5}

Ta có:

5sqrt{dfrac{1}{5}}+dfrac{1}{2}sqrt{20}+sqrt{5}

eqalign{
& = sqrt {{5^2}.{1 over 5}} + sqrt {{{left( {{1 over 2}} right)}^2}.20} + sqrt 5 cr
& = sqrt {25.{1 over 5}} + sqrt {{1 over 4}.20} + sqrt 5 cr
& = sqrt {{{25} over 5}} + sqrt {{{20} over 4}} + sqrt 5 cr
& = sqrt 5 + sqrt 5 + sqrt 5 cr
& = left( {1 + 1 + 1} right)sqrt 5 = 3sqrt 5 cr}

b. sqrt{dfrac{1}{2}}+sqrt{4,5}+sqrt{12,5};

Ta có:

sqrt{dfrac{1}{2}}+sqrt{4,5}+sqrt{12,5}

eqalign{
& = sqrt {{1 over 2}} + sqrt {{9 over 2}} + sqrt {{{25} over 2}} cr
& = sqrt {{1 over 2}} + sqrt {9.{1 over 2}} + sqrt {25.{1 over 2}} cr
& = sqrt {{1 over 2}} + sqrt {3^2.{1 over 2}} + sqrt {5^2.{1 over 2}} cr
& = sqrt {{1 over 2}} + 3sqrt {{1 over 2}} + 5sqrt {{1 over 2}} cr
& = left( {1 + 3 + 5} right).sqrt {{1 over 2}} cr
& = 9sqrt {{1 over 2}} = 9{1 over {sqrt 2 }} cr
& = 9.{{sqrt 2 } over {sqrt 2.sqrt 2 }} = {{9sqrt 2 } over 2} cr}

c. sqrt{20}-sqrt{45}+3sqrt{18}+sqrt{72};

Ta có:

eqalign{
& sqrt {20} - sqrt {45} + 3sqrt {18} + sqrt {72} cr
& = sqrt {4.5} - sqrt {9.5} + 3sqrt {9.2} + sqrt {36.2} cr
& = sqrt {{2^2}.5} - sqrt {{3^2}.5} + 3sqrt {{3^2}.2} + sqrt {{6^2}.2} cr
& = 2sqrt 5 - 3sqrt 5 + 3.3sqrt 2 + 6sqrt 2 cr
& = 2sqrt 5 - 3sqrt 5 + 9sqrt 2 + 6sqrt 2 cr
& = left( {2sqrt 5 - 3sqrt 5 } right) + left( {9sqrt 2 + 6sqrt 2 } right) cr
& = left( {2 - 3} right)sqrt 5 + left( {9 + 6} right)sqrt 2 cr
& = - sqrt 5 + 15sqrt 2 = 15sqrt 2 - sqrt 5 cr}

d. 0,1.sqrt{200}+2.sqrt{0,08}+0,4.sqrt{50}

Ta có:

eqalign{
& 0,1sqrt {200} + 2sqrt {0,08} + 0,4.sqrt {50} cr
& = 0,1sqrt {100.2} + 2sqrt {0,04.2} + 0,4sqrt {25.2} cr
& = 0,1sqrt {10^2.2} + 2sqrt {0,2^2.2} + 0,4sqrt {5^2.2} cr
& = 0,1.10sqrt 2 + 2.0,2sqrt 2 + 0,4.5sqrt 2 cr
& = 1sqrt 2 + 0,4sqrt 2 + 2sqrt 2 cr
& = left( {1 + 0,4 + 2} right)sqrt 2 = 3,4sqrt 2 cr}

Bài 59 (trang 32 SGK Toán 9 Tập 1)

Rút gọn các biểu thức sau (với a>0, b>0):

a. 5sqrt{a}-4bsqrt{25a^{3}}+5asqrt{16ab^{2}}-2sqrt{9a};

b. 5asqrt{64ab^{3}}-sqrt{3}cdot sqrt{12a^{3}b^{3}}+2absqrt{9ab}-5bsqrt{81a^{3}b}.

Gợi ý đáp án:

a. 5sqrt{a}-4bsqrt{25a^{3}}+5asqrt{16ab^{2}}-2sqrt{9a};

Ta có:

5sqrt{a}-4bsqrt{25a^{3}}+5asqrt{16ab^{2}}-2sqrt{9a}

=5sqrt a - 4bsqrt{5^2.a^2.a}+5asqrt{4^2.b^2.a}-2sqrt{3^2.a}

=5sqrt a - 4bsqrt{(5a)^2.a}+5asqrt{(4b)^2.a}-2sqrt{3^2.a}

=5sqrt a - 4b.5asqrt{.a}+5a.4bsqrt{a}-2.3sqrt{a}

=5sqrt{a}-20absqrt{a}+20absqrt{a}-6sqrt{a}

=(5sqrt{a}-6sqrt{a})+(-20absqrt{a}+20absqrt{a})

=(5-6)sqrt a=-sqrt{a}

b. 5asqrt{64ab^{3}}-sqrt{3}cdot sqrt{12a^{3}b^{3}}+2absqrt{9ab}-5bsqrt{81a^{3}b}.

Ta có:

5asqrt{64ab^{3}}-sqrt{3}.sqrt{12a^{3}b^{3}}+2absqrt{9ab}-5bsqrt{81a^{3}b}

=5asqrt{8^2.b^2.ab}-sqrt{3}.sqrt{2^2.3.(ab)^2.ab},+2absqrt{3^2.ab}-5bsqrt{9^2.a^2.ab}

=5asqrt{(8b)^2.ab}-sqrt{3}.sqrt{(2ab)^2.3.ab}+2absqrt{3^2.ab},-5bsqrt{(9a)^2.ab}

=5a.8bsqrt{ab}-sqrt{3}.2sqrt 3 absqrt{ab}+2ab.3sqrt{ab},-5b.9asqrt{ab}

=40absqrt{ab}-2.3absqrt{ab}+6absqrt{ab}-45absqrt{ab}

=40absqrt{ab}-6absqrt{ab}+6absqrt{ab}-45absqrt{ab}

=40absqrt{ab}-45absqrt{ab}

=(40-45)absqrt{ab}

=-5absqrt{ab}.

Bài 60 (trang 33 SGK Toán 9 Tập 1)

Cho biểu thức B= sqrt{16x+16}-sqrt{9x+9}+sqrt{4x+4}+sqrt{x+1} với xgeq -1.

a) Rút gọn biểu thức B;

b) Tìm x sao cho B có giá trị là 16.

Gợi ý đáp án:

a) Ta có:

B= sqrt{16x+16}-sqrt{9x+9}+sqrt{4x+4}+sqrt{x+1}

= sqrt{16(x+1)}-sqrt{9(x+1)}+sqrt{4(x+1)}+sqrt{x+1}

= sqrt{4^2(x+1)}-sqrt{3^2(x+1)}+sqrt{2^2(x+1)}+sqrt{x+1}

= 4sqrt{x+1}-3sqrt{x+1}+2sqrt{x+1}+sqrt{x+1}

=(4-3+2+1)sqrt{x+1}

=4sqrt{x+1}.

b) Ta có:

B = 16 Leftrightarrow 4sqrt {x + 1} = 16

eqalign{
& Leftrightarrow sqrt {x + 1} = {{16} over 4} cr
& Leftrightarrow sqrt {x + 1} = 4 cr
& Leftrightarrow {left( {sqrt {x + 1} } right)^2} = {4^2} cr
& Leftrightarrow x + 1 = 16 cr
& Leftrightarrow x = 16 - 1 cr
& Leftrightarrow x = 15(text{thỏa mãn},xge -1) cr}

Vậy với x=15 thì B=16.

Bài 61 (trang 33 SGK Toán 9 Tập 1)

Chứng minh các đẳng thức sau:

a. dfrac{3}{2}sqrt 6+ 2sqrt{dfrac{2}{3}}-4sqrt{dfrac{3}{2}}=dfrac{sqrt 6}{6}

b. left( {xsqrt {dfrac{6}{x}} + sqrt {dfrac{2x}{3}} + sqrt {6x} } right):sqrt {6x}=dfrac{7}{3} với x > 0.

Gợi ý đáp án:

a. dfrac{3}{2}sqrt 6+ 2sqrt{dfrac{2}{3}}-4sqrt{dfrac{3}{2}}=dfrac{sqrt 6}{6}

Biến đổi vế trái ta có:

VT = dfrac{3}{2}sqrt 6+ 2sqrt{dfrac{2}{3}}-4sqrt{dfrac{3}{2}}

=3dfrac{sqrt 6}{2}+2dfrac{sqrt{2}}{sqrt 3}-4dfrac{sqrt 3}{sqrt 2}

=3dfrac{sqrt 6}{2}+2dfrac{sqrt 2sqrt 3}{sqrt 3 .sqrt 3}-4.dfrac{sqrt 3 .sqrt 2}{sqrt 2.sqrt 2}

=3dfrac{sqrt 6}{2}+2dfrac{sqrt 6}{3}-4dfrac{sqrt 6}{2}

=3dfrac{sqrt 6 .3}{2.3}+2dfrac{sqrt 6 .2}{3.2}-4dfrac{sqrt 6 .3}{2.3}

=9dfrac{sqrt 6}{6}+4dfrac{sqrt 6}{6}-12dfrac{sqrt 6}{6}

=(9+4-12)dfrac{sqrt 6}{6}=dfrac{sqrt 6}{6}=VP.

b. left( {xsqrt {dfrac{6}{x}} + sqrt {dfrac{2x}{3}} + sqrt {6x} } right):sqrt {6x}=dfrac{7}{3} với x > 0.

Biến đổi vế trái ta có:

VT = left( {xsqrt {dfrac{6}{x}} + sqrt {dfrac{2x}{3}} + sqrt {6x} } right):sqrt {6x}

eqalign{
& = left( {xsqrt {{{6x} over {{x^2}}}} + sqrt {{{2x.3} over {{3^2}}}} + sqrt {6x} } right):sqrt {6x} cr
& = left( {x{{sqrt {6x} } over {sqrt {{x^2}} }} + {{sqrt {6x} } over {sqrt {{3^2}} }} + sqrt {6x} } right):sqrt {6x} cr
& = left( {x{{sqrt {6x} } over x} + {{sqrt {6x} } over 3} + sqrt {6x} } right):sqrt {6x} cr
& = left( {1.sqrt {6x} + {1 over 3}sqrt {6x} + sqrt {6x} } right):sqrt {6x} cr
& = left( {1 + {1 over 3} + 1} right)sqrt {6x} :sqrt {6x} cr
& = {7 over 3}sqrt {6x} :sqrt {6x} cr
& = dfrac{7}{3} =VP.cr}

Giải bài tập toán 9 trang 33: Luyện tập

Bài 62 (trang 33 SGK Toán 9 Tập 1)

Rút gọn các biểu thức sau:

a. dfrac{1}{2}sqrt{48}-2sqrt{75}-dfrac{sqrt{33}}{sqrt{11}}+5sqrt{1dfrac{1}{3}};

Ta có:

dfrac{1}{2}sqrt{48}-2sqrt{75}-dfrac{sqrt{33}}{sqrt{11}}+5sqrt{1dfrac{1}{3}}

=dfrac{1}{2}sqrt{16. 3}-2sqrt{25. 3}-dfrac{sqrt{3.11}}{sqrt{11}}+5sqrt{dfrac{1.3+1}{3}}

=dfrac{1}{2}sqrt{4^2. 3}-2sqrt{5^2. 3}-dfrac{sqrt 3.sqrt{11}}{sqrt{11}}+5sqrt{dfrac{4}{3}}

=dfrac{1}{2}.4sqrt{ 3}-2.5sqrt{3}-sqrt{3}+5dfrac{sqrt 4}{sqrt 3}

=dfrac{4}{2}sqrt{ 3}-10sqrt{3}-sqrt{3}+5dfrac{sqrt{4}.sqrt 3}{sqrt{3}.sqrt {3}}

=2sqrt{ 3}-10sqrt{3}-sqrt{3}+5dfrac{2sqrt{3}}{3}

=2sqrt{ 3}-10sqrt{3}-sqrt{3}+10dfrac{sqrt{3}}{3}

= left( {2 - 10 - 1 + dfrac{10}{3} }right)sqrt 3

=-dfrac{17}{3}sqrt 3.

b. sqrt{150}+sqrt{1,6}. sqrt{60}+4,5.sqrt{2dfrac{2}{3}}-sqrt{6};

Ta có:

sqrt{150}+sqrt{1,6}. sqrt{60}+4,5. sqrt{2dfrac{2}{3}}-sqrt{6}

=sqrt{25. 6}+sqrt{1,6. 60}+4,5.sqrt{dfrac{2.3+2}{3}}-sqrt{6}

=sqrt{5^2. 6}+sqrt{1,6. (6.10)}+4,5sqrt{dfrac{8}{3}}-sqrt{6}

=5sqrt{ 6}+sqrt{(1,6. 10).6}+4,5dfrac{sqrt 8}{sqrt 3}-sqrt{6}

=5sqrt{ 6}+sqrt{16.6}+4,5dfrac{sqrt 8 . sqrt 3}{ 3}-sqrt{6}

=5sqrt{ 6}+sqrt{4^2.6}+4,5dfrac{sqrt {8 .3}}{ 3}-sqrt{6}

= 5sqrt{6}+4sqrt{ 6}+4,5. dfrac{sqrt{4.2. 3}}{3}-sqrt{6}

=5sqrt{6}+4sqrt{6}+4,5. dfrac{sqrt{2^2.6}}{3}-sqrt{6}

=5sqrt{6}+4sqrt{6}+4,5. 2dfrac{sqrt{6}}{3}-sqrt{6}

=5sqrt{6}+4sqrt{6}+9dfrac{sqrt{6}}{3}-sqrt{6}

=5sqrt{6}+4sqrt{6}+3sqrt{6}-sqrt{6}

=(5+4+3-1)sqrt{6}=11sqrt{6}.

c. (sqrt{28}-2sqrt{3}+sqrt{7})sqrt{7}+sqrt{84};

Ta có:

=(sqrt{28}-2sqrt{3}+sqrt{7})sqrt{7}+sqrt{84}

=(sqrt{4.7}-2sqrt{3}+sqrt{7})sqrt{7}+sqrt{4.21}

=(sqrt{2^2.7}-2sqrt{3}+sqrt{7})sqrt{7}+sqrt{2^2.21}

=(2sqrt{7}-2sqrt{3}+sqrt{7})sqrt{7}+2sqrt{21}

= 2sqrt{7}.sqrt{7}-2sqrt{3}.sqrt{7}+sqrt{7}.sqrt{7}+2sqrt{21}

=2.(sqrt{7})^2-2sqrt{3.7}+(sqrt{7})^2+2sqrt{21}

=2.7-2sqrt{21}+7+2sqrt{21}

=14-2sqrt{21}+7+2sqrt{21}

=14+7=21.

d. (sqrt{6}+sqrt{5})^{2}-sqrt{120}.

Ta có:

(sqrt{6}+sqrt{5})^{2}-sqrt{120}

=(sqrt 6)^2+2.sqrt 6 .sqrt 5+(sqrt 5)^2-sqrt{4.30}

=6+2sqrt{6.5}+5-2sqrt{30}

=6+2sqrt{30}+5-2sqrt{30}=6+5=11.

Bài 63 (trang 33 SGK Toán 9 Tập 1)

Rút gọn biểu thức sau:

a. sqrt{dfrac{a}{b}}+sqrt{ab}+dfrac{a}{b}sqrt{dfrac{b}{a}} với a>0 và b>0

b.sqrt{dfrac{m}{1-2x+x^{2}}}.sqrt{dfrac{4m-8mx+4m^{2}}{81}} với m>0 và xneq 1.

Gợi ý đáp án

a. sqrt{dfrac{a}{b}}+sqrt{ab}+dfrac{a}{b}sqrt{dfrac{b}{a}} với a>0 và b>0

Ta có:

sqrt{dfrac{a}{b}}+sqrt{ab}+dfrac{a}{b}sqrt{dfrac{b}{a}}

=dfrac{sqrt{a}}{sqrt b}+sqrt{ab}+dfrac{a}{b}.dfrac{sqrt{b}}{sqrt a}

=dfrac{sqrt{a}.sqrt b}{(sqrt b)^2}+sqrt{ab}+dfrac{a}{b}.dfrac{sqrt{b}.sqrt a}{(sqrt a)^2}

=dfrac{sqrt{ab}}{b}+sqrt{ab}+dfrac{a}{b}.dfrac{sqrt{ab}}{a}

=dfrac{sqrt{ab}}{b}+sqrt{ab}+dfrac{sqrt{ab}}{b}

={left(dfrac{sqrt{ab}}{b}+dfrac{sqrt{ab}}{b} right)}+sqrt{ab}

=dfrac{2sqrt{ab}}{b}+sqrt{ab}

=dfrac{2sqrt{ab}}{b}+dfrac{bsqrt{ab}}{b}

=dfrac{2+b}{b}sqrt{ab}.

b.sqrt{dfrac{m}{1-2x+x^{2}}}.sqrt{dfrac{4m-8mx+4m^{2}}{81}} với m>0 và xneq 1.

Ta có:

sqrt{dfrac{m}{1-2x+x^{2}}}.sqrt{dfrac{4m-8mx+4mx^{2}}{81}}

=sqrt{dfrac{m}{1-2x+x^{2}}}.sqrt{dfrac{4m(1-2x+x^{2})}{81}}

=sqrt{dfrac{m}{1-2x+x^{2}}.dfrac{4m(1-2x+x^{2})}{81}}

=sqrt{dfrac{m}{1}.dfrac{4m}{81}}=sqrt{dfrac{4m^{2}}{81}}

=sqrt{dfrac{(2m)^2}{9^2}}=dfrac{|2m|}{9}=dfrac{2m}{9}.

(vì m >0 nên |2m|=2m.)

Bài 64 (trang 33 SGK Toán 9 Tập 1)

Chứng minh các đẳng thức sau:

a. left ( dfrac{1-asqrt{a}}{1-sqrt{a}} +sqrt{a}right ). left ( dfrac{1-sqrt{a}}{1-a} right )^{2}= 1 với a ≥ 0 và a ≠ 1

b. dfrac{a+b}{b^{2}}sqrt{dfrac{a^{2}b^{4}}{a^{2}+2ab+b^{2}}} = left| a right| với a + b > 0 và b ≠ 0

Gợi ý đáp án:

Khám Phá Thêm:   Tổng hợp cách để tạo nên bức ảnh Instagram ấn tượng

Biến đổi vế trái để được vế phải.

Ta có:

VT=left ( dfrac{1-asqrt{a}}{1-sqrt{a}} +sqrt{a}right ). left ( dfrac{1-sqrt{a}}{1-a} right )^{2}

=left ( dfrac{1-(sqrt{a})^3}{1-sqrt{a}} +sqrt{a}right ). left ( dfrac{1-sqrt{a}}{(1-sqrt a)(1+ sqrt a)} right )^{2}

=left ( dfrac{(1-sqrt{a})(1+sqrt a+(sqrt a)^2)}{1-sqrt{a}} +sqrt{a}right ). left ( dfrac{1}{1+ sqrt a} right )^{2}

=left [ (1+sqrt a+(sqrt a)^2) +sqrt{a}right ]. dfrac{1}{(1+ sqrt a)^2}

=left [ (1+2sqrt a+(sqrt a)^2)right ]. dfrac{1}{(1+ sqrt a)^2}

=(1+sqrt a)^2. dfrac{1}{(1+ sqrt a)^2}=1=VP.

b. dfrac{a+b}{b^{2}}sqrt{dfrac{a^{2}b^{4}}{a^{2}+2ab+b^{2}}} = left| a right| với a + b > 0 và b ≠ 0

Ta có:

VT=dfrac{a+b}{b^{2}}sqrt{dfrac{a^{2}b^{4}}{a^{2}+2ab+b^{2}}}

=dfrac{a+b}{b^{2}}sqrt{dfrac{(ab^2)^2}{(a+b)^2}}

=dfrac{a+b}{b^{2}}dfrac{sqrt{(ab^2)^2}}{sqrt{(a+b)^2}}

=dfrac{a+b}{b^{2}}dfrac{|ab^2|}{|a+b|}

=dfrac{a+b}{b^{2}}.dfrac{|a|b^2}{a+b}=|a|=VP

Vì a+b > 0 Rightarrow |a+b|=a+b.

Bài 65 (trang 34 SGK Toán 9 Tập 1)

Rút gọn rồi so sánh giá trị của M với 1, biết:

M={left(dfrac{1}{a -sqrt a} +dfrac{1}{sqrt a -1}right)} : dfrac{sqrt a +1}{a -2sqrt a+1} với a > 0 và a ne 1.

Gợi ý đáp án:

Ta có:

M={left(dfrac{1}{a -sqrt a} +dfrac{1}{sqrt a -1}right)} : dfrac{sqrt a +1}{a -2sqrt a+1}

={left(dfrac{1}{sqrt a .sqrt a -sqrt a .1}+dfrac{1}{sqrt a -1} right)} : dfrac{sqrt a +1}{(sqrt a)^2 -2sqrt a+1}

={left(dfrac{1}{sqrt a(sqrt a -1)}+dfrac{1}{sqrt a -1} right)} : dfrac{sqrt a +1}{(sqrt a -1)^2}

={left(dfrac{1}{sqrt a(sqrt a -1)}+dfrac{sqrt a}{sqrt a(sqrt a -1)} right)} : dfrac{sqrt a +1}{(sqrt a -1)^2}

=dfrac{1+sqrt a}{sqrt a(sqrt a -1)} : dfrac{sqrt a +1}{(sqrt a -1)^2}

=dfrac{1+sqrt a}{sqrt a(sqrt a -1)} . dfrac{(sqrt a -1)^2}{sqrt a +1}

=dfrac{1}{sqrt a} . dfrac{sqrt a -1}{1}=dfrac{sqrt a -1}{sqrt a}.

=dfrac{sqrt a}{sqrt a}-dfrac{1}{sqrt a} =1 -dfrac{1}{sqrt a}

Vì a > 0 Rightarrow sqrt a > 0 Rightarrow dfrac{1}{sqrt a} > 0 Rightarrow 1 -dfrac{1}{sqrt a} < 1.

Vậy M < 1.

Bài 66 (trang 34 SGK Toán 9 Tập 1)

Giá trị của biểu thức dfrac{1}{2+sqrt{3}}+dfrac{1}{2-sqrt{3}} bằng:

(A) dfrac{1}{2};

(B) 1;

(C) -4;

(D) 4.

Hãy chọn câu trả lời đúng.

Gợi ý đáp án:

Ta có:

dfrac{1}{2+sqrt{3}}+dfrac{1}{2-sqrt{3}}

=dfrac{2-sqrt{3}}{(2+sqrt{3})(2-sqrt{3})}+dfrac{2+sqrt{3}}{(2-sqrt{3})(2+sqrt{3})}

=dfrac{2-sqrt{3}}{2^2-(sqrt 3)^2}+dfrac{2+sqrt{3}}{2^2-(sqrt 3)^2}

=dfrac{2-sqrt{3}}{4-3}+dfrac{2+sqrt{3}}{4-3}

=dfrac{2-sqrt{3}}{1}+dfrac{2+sqrt{3}}{1}

=2-sqrt{3}+2+sqrt{3}=4.

Chọn đáp án (D). 4

Lý thuyết Rút gọn biểu thức chứa căn thức bậc hai

I. Kiến thức về rút gọn biểu thức chứa căn bậc hai

Khi thực hiện rút gọn biểu thức chứa căn thức bậc hai, ta phải vận dụng mọi quy tắc và mọi tính chất của các phép tính trên các số thực nói chung và trên các căn thức nói riêng như:

– Phép nhân, phép chia các căn bậc hai;

– Phép khai phương một tích, một thương;

– Phép đưa thừa số vào trong, ra ngoài dấu căn;

– Phép khử mẫu của biểu thức dưới căn;

– Phép trục căn thức ở mẫu.

Nói riêng, khi làm tính cộng hoặc trừ trên các căn thức, ta thường dùng các phép đưa thừa số vào trong hoặc ra ngoài dấu căn để được những căn thức có cùng biểu thức dưới dấu căn rối áp dụng tính chất phân phối của phép nhân đối với phép cộng và phép trừ.

II. Một số dạng toán thường gặp rút gọn biểu thức chứa căn bậc hai

Dạng 1: Rút gọn và tính giá trị biểu thức chứa căn thức bậc hai.

Phương pháp:

– Vận dụng linh hoạt các phép biến đổi đã biết và tính toán để xuất hiện các căn thức có cùng biểu thức dưới dấu căn

– Cộng, trừ, nhân, chia các căn thức bậc hai cùng loại với nhau.

Khám Phá Thêm:   Giải bài toán bằng cách lập phương trình Cách giải bài toán bằng cách lập phương trình

Dạng 2: Chứng minh đẳng thức chứa căn thức bậc hai.

Phương pháp:

Vận dụng thích hợp các phép biến đổi đã học và các hằng đẳng thức đáng nhớ, các cách phân tích đa thức thành nhân tử để thực hiện phép chứng minh.

Dạng 3: Rút gọn biểu thức chứa căn và các bài toán liên quan.

Phương pháp:

– Ta sử dụng thích hợp các phép phân tích đa thức thành nhân tử, các hằng đẳng thức và các phép biến đổi đơn giản biểu thức chứa căn để rút gọn.

– Các bài toán liên quan :

+) Tính giá trị của biểu thức khi biết giá trị của biến, giải phương trình hoặc bất phương trình để tìm biến.

+) Tìm giá trị của biến để biểu thức có giá trị nguyên

+) So sánh biểu thức với một số

+) Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức.

Dạng 4: Giải phương trình chứa căn thức bậc hai.

Phương pháp:

Ta sử dụng thích hợp các phép phân tích đa thức thành nhân tử, các hằng đẳng thức và các phép biến đổi đơn giản biểu thức chứa căn để đưa phương trình đã cho về dạng cơ bản.

Các công thức biến đổi căn thức

1. quad sqrt{A^{2}}=|A|=left{begin{array}{l}A text { nếu } mathrm{A} geq 0 \ -A text { nếu } mathrm{A}<0end{array}right.

2. quad sqrt{A B}=sqrt{A} cdot sqrt{B}
(Với A geq 0 ; B geq 0 )

3. sqrt{frac{A}{B}}=frac{sqrt{A}}{sqrt{B}} (Với A ≥ B> 0)

4. quad sqrt{A^{2} B}=|A| sqrt{B} quad (Với B geq 0 )

5. A sqrt{B}=sqrt{A^{2} B}(Với A geq 0 ;B geq 0)

6. A sqrt{B}=-sqrt{A^{2} B} (Với A<0 ; B geq 0)

7. sqrt{frac{A}{B}}=frac{1}{|B|} sqrt{A B} quad (Với A geq 0 ; B>0 )
begin{array}{ll}text { 8. } frac{A}{sqrt{B}} & =frac{A sqrt{B}}{B} & text { (Với } B>0 text { ) }end{array}

9 quad frac{C}{sqrt{A} pm B}=frac{C(sqrt{A} pm B)}{A-B^{2}} quad (Với A geq 0 ; mathrm{A} neq mathrm{B}^{2} )

10 quad frac{C}{sqrt{A} pm sqrt{B}}=frac{C(sqrt{A} pm sqrt{B})}{A-B} quad (Với left.A geq 0 ; B geq 0 ; mathrm{A} neq mathrm{B}right)

11 (sqrt[3]{A})^{3}=sqrt[3]{A^{3}}=A

* Cách tìm điều kiện trong bài toán chứa căn thức

1. sqrt{A} quad Đ K X Đ: A geq 0 quad Ví dụ: sqrt{x-2018} quad ĐKXĐ: quad x geq 2018

2. frac{A}{B} quad boxminus K X Đ: B neq 0 quad Ví dụ: frac{x+4}{x-7} quad ĐKXĐ: x neq 7

3. frac{A}{sqrt{B}} quad boxminus K X Đ: B>0 quad Ví dụ: frac{x+1}{sqrt{x-3}} quad ĐKXĐ: quad x>3

4. frac{sqrt{A}}{sqrt{B}} quad ĐKXĐ: A geq 0 ; B>0 quad Ví dụ: frac{sqrt{x}}{sqrt{x-3}} quad ĐKXĐ: quadleft{begin{array}{l}x geq 0 \ x>3end{array} Leftrightarrow x>3right.

5. sqrt{frac{A}{B}} quad ĐKXĐ: left[begin{array}{l}left{begin{array}{l}A leq 0 \ B<0end{array}right. \ left{begin{array}{l}A geq 0 \ B>0end{array} quad text { Ví dụ: } sqrt{frac{x+1}{x+2}}right.end{array} quadright. ĐXĐ: left[begin{array}{l}left{begin{array}{l}x+1 leq 0 \ x+2<0end{array}right. \ left{begin{array}{l}x+1 geq 0 \ x+2>0end{array}right.end{array} Leftrightarrowleft[begin{array}{l}x<-2 \ x geq 1end{array}right.right.

Cho a >0 ta có:

6. x^{2}>a Leftrightarrowleft[begin{array}{l}x>sqrt{a} \ x<-sqrt{a}end{array} quadright. Ví dụ: x^{2}>1 Leftrightarrowleft[begin{array}{l}x>sqrt{a} \ x<-sqrt{a}end{array}right.

Cảm ơn bạn đã xem bài viết Giải Toán 9 Bài 8: Rút gọn biểu thức chứa căn thức bậc hai Giải SGK Toán 9 Tập 1 (trang 32, 33, 34) tại Thcslytutrongst.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

 

Bài Viết Liên Quan

Giáo án Mĩ thuật 6 sách Cánh diều (Cả năm) Kế hoạch bài dạy môn Âm nhạc lớp 6
Giáo án Mĩ thuật 6 sách Cánh diều (Cả năm) Kế hoạch bài dạy môn Âm nhạc lớp 6
Kế hoạch dạy học môn Hoạt động trải nghiệm hướng nghiệp 7 sách Kết nối tri thức với cuộc sống Phân phối chương trình môn Hoạt động trải nghiệm 7
Bài dự thi tìm hiểu tư tưởng Hồ Chí Minh về Công an nhân dân Đáp án câu hỏi thi viết tìm hiểu tư tưởng Hồ Chí Minh về CAND
Bài viết trước: « Công nghệ 11 Bài 3: Phân loại vật nuôi Giải Công nghệ Chăn nuôi 11 sách Cánh diều
Bài viết tiếp theo: Tổng hợp code Hắc Nguyệt Quyền Thần và cách nhập »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Liên Kết Giới Thiệu

tin tức bóng rổ NBA hôm nay

Copyright © 2023 · Thcslytutrongst.edu.vn - Thông Tin Kiến Thức Bổ Ích 789bet