Thcslytutrongst.edu.vn - Thông Tin Kiến Thức Bổ Ích

Hướng dẫn tìm công thức truy hồi của dãy số Công thức truy hồi

Tháng 6 21, 2023 by Thcslytutrongst.edu.vn

Bạn đang xem bài viết Hướng dẫn tìm công thức truy hồi của dãy số Công thức truy hồi tại Thcslytutrongst.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Công thức truy hồi là những công thức quan trọng giúp các em lớp 11, lớp 12 cần ghi nhớ để vận dụng tính toán nhanh nhất các bài toán truy hồi và cho ra kết quả chính xác.

Trong kì thi THPT Quốc gia môn Toán thì số lượng công thức cần ghi nhớ là không hề nhỏ. Đối với các bài thi trắc nghiệm, điều cần thiết là các em học sinh cần nắm kiến thức rộng và có phương pháp giải nhanh hiệu quả để có thể ghi điểm nhiều nhất. Bên cạnh công thức truy hồi các bạn xem thêm bộ đề ôn thi THPT Quốc gia môn Toán, phân dạng câu hỏi và bài tập trong đề thi THPT Quốc gia môn Toán.

Mục Lục Bài Viết

  • 1. Nội dung chính tài liệu công thức truy hồi
  • 2. Cách tìm công thức truy hồi

1. Nội dung chính tài liệu công thức truy hồi

Dạng 1: Tìm số hạng tổng quát của dãy số (dạng đa thức) khi biết các số hạng đầu tiên

Dạng 2: Dạng cơ sở: Cho dãy (un) biết u1 = a và un+1 = q.un + d ∀ n ≥ 1 với q, d là các hằng số thực

Gồm 4 trường hợp, dạng này được gọi là dạng cơ sở vì:

Khám Phá Thêm:   Văn mẫu lớp 6: Đoạn văn cảm nhận văn bản Tuổi thơ tôi của nhà văn Nguyễn Nhật Ánh 4 đoạn văn mẫu lớp 6

+ Với 3 trường hợp 1, 2, và 3 dãy số trở thành các dãy đặc biệt đó là: dãy số hằng, cấp số cộng và cấp số nhân. Các dãy số này ta đều đã tìm được công thức của số
hạng tổng quát.

+ Trên cơ sở của 3 dãy này, để giải trường hợp 4: bằng phương pháp đặt một dãy số mới (vn) liên hệ với dãy số (un) bằng một biểu thức nào đó để có thể đưa được về dãy số (vn) mà (vn) dãy số hằng hoặc cấp cộng hoặc cấp số nhân.

+ Vấn đề đặt ra là: Mối liên hệ giữa (un) và (vn) bởi biểu thức nào mới có thể đưa dãy số (vn) thành dãy số hằng hoặc cấp số cộng hoặc cấp số nhân hoặc trường hợp 4.

2. Cách tìm công thức truy hồi

Dạng 1: Tìm số hạng tổng quát của dãy số (dạng đa thức) khi biết các số hạng đầu tiên

Ví du 1.1: Cho dãy số left(u_{n}right) có dạng khai triển sau: 1 ;-1 ;-1 ; 1 ; 5 ; 11 ; 19 ; 29 ; 41 ; 55 ; ……..

Hãy tìm công thức của số hạng tổng quát và tìm số tiếp theo?

Bài giải

Nhận xét: Với 10 số hạng đầu thế này, để tìm ra quy luật biểu diễn là rất khó. Với những cách cho này ta thường làm phương pháp sau:

Đặt:

begin{aligned}
&Delta u_{k}=u_{k+1}-u_{k} \
&Delta^{2} u_{k}=Delta u_{k+1}-Delta u_{k} \
&Delta^{3} u_{k}=Delta^{2} u_{k+1}-Delta^{2} u_{k}
end{aligned}

Ta lập bảng các giá trị Delta u_{k}, Delta^{2} u_{k}, Delta^{3} u_{k} ldots . . nếu đến hàng nào có giá trị không đổi thì dừng lại, sau đó kết luận u_{n} là đa thức bậc 1,2,3, ………….và ta đi tìm đa thức đó.

Khám Phá Thêm:   Hoạt động trải nghiệm 6: Giải quyết một số vấn đề nảy sinh trong gia đình Trải nghiệm hướng nghiệp lớp 6 trang 29 sách Kết nối tri thức

Dạng 2: Dạng cơ sở:

Cho dãy left(u_{n}right)

Với q,d là các hằng số thực.

GIẢI:

– Trường hợp 1: Nếu q=0 Rightarrowleft{begin{array}{l}u_{1}=a \ u_{n+1}=d, n geq 1end{array}right. Rightarrow u_{1}=a, u_{n}=d, forall n in mathbb{N}^{*}, n geq 2

-Trường hợp 2: Nếu q=1 Rightarrowleft{begin{array}{l}u_{1}=a \ u_{n+1}=u_{n}+d, n geq 1end{array}right.

Rightarrowleft(u_{n}right) là cấp số cộng với số hạng đầu u_{1}=a và công sai bằng d

Rightarrow u_{n}=a+(n-1) d

-Trường hợp 3: Nếu d=0 Rightarrowleft{begin{array}{l}u_{1}=a \ u_{n+1}=q u_{n}, n geq 1end{array}right.

Rightarrowleft(u_{n}right) là cấp số nhân với số hạng đầu u_{1}=a và công bội bằng q

Rightarrow u_{n}=a cdot q^{n-1}

-Trường hợp 4: Nếu q neq 0, q neq 1, d neq 0. Đặt dãy left(v_{n}right) sao cho u_{n}=v_{n}+frac{d}{1-q}(1)

Thay ct(1) vào công thức truy hồi ta có:

begin{aligned}
&v_{n+1}+frac{d}{1-q}=qleft(v_{n}+frac{d}{1-q}right)+d \
&Rightarrow v_{n+1}=q v_{n}, n geq 1
end{aligned}
Rightarrowleft(v_{n}right) là một cấp số nhân với số hạng đầu v_{1}=u_{1}-frac{d}{1-q}=a-frac{d}{1-q} và công bội bằng q

Ví du 2.1: Tìm công thức của số hạng tổng quát của các dãy left(u_{n}right)biết:

1) left{begin{array}{l}u_{1}=-1 \ u_{n+1}=u_{n}+3, n geq 1end{array}right. 2) left{begin{array}{l}u_{1}=1 \ u_{n+1}=2 u_{n}+3, n geq 1end{array}right.
left(right. Ðs: left.u_{n}=3 n-4right)

(Đs: u_{n} )

Giải:

1) left{begin{array}{l}u_{1}=-1 \ u_{n+1}=u_{n}+3, n geq 1end{array}right.

Vì u_{n+1}=u_{n}+3, n geq 1

Rightarrowleft(u_{n}right)là một cấp số cộng với số hạng đầu u_{1}=-1 và công sai d=3

Rightarrow u_{n}=u_{1}+(n-1) d=-1+3(n-1)=3 n-4

2) left{begin{array}{l}u_{1}=1 \ u_{n+1}=2 u_{n}+3, n geq 1end{array}right.

Nhận xét: Dãy số này có dạng 1 với q=1, d=3

Đặt dãy left(v_{n}right) sao cho:u_{n}

Thay (1) vào công thức truy hồi ta được

v_{n+1}-3=2left(v_{n}-3right)+3 Rightarrow v_{n+1}=2 v_{n}

Rightarrowleft(v_{n}right) là cấp số nhân với số hạng đầu v_{1}=u_{1}+3=1+3=4 và công bội q=2

Rightarrow v_{n}=4.2^{n-1}=2^{n+1}

Rightarrow u_{n}=v_{n}-3=2^{n+1}-3

Nhân xét: Câu 1:left{begin{array}{l}u_{1}=-1 \ u_{n+1}=u_{n}+3, n geq 1end{array}right.

Còn có các cách sau:

Cách 2:

Ta có:

begin{aligned}
&u_{1}=-1 \
&u_{2}=u_{1}+3 \
&u_{3}=u_{2}+3
end{aligned}

4.

u_{n}=u_{n-1}+3

Cộng vế với vế các hệ thức trên ta được:

begin{aligned}
&u_{1}+u_{2}+u_{3}+ldots ldots+u_{n}=-1+u_{1}+u_{2}+u_{3}+ldots . .+u_{n-1}+3(n-1) \
&Rightarrow u_{n}=-1+3(n-1) \
&Rightarrow u_{n}=3 n-4
end{aligned}

…………..

Mời các bạn tải File tài liệu để xem thêm về Công thức truy hồi

Cảm ơn bạn đã xem bài viết Hướng dẫn tìm công thức truy hồi của dãy số Công thức truy hồi tại Thcslytutrongst.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

 

Bài Viết Liên Quan

Hướng dẫn tắt kiểm tra chính tả trên Windows 10
Cách trình bày bài dự thi Đại sứ văn hóa đọc 2025
Phim Hit the Spot: Nội dung, diễn viên và lịch chiếu phim
Previous Post: « Hóa 11 Bài 17: Phenol Giải bài tập Hóa 11 trang 116, 117, 118, 119, 120, 121
Next Post: Background Giấy Cổ, Báo, Nhàu, Cũ Với Vẻ Đẹp Độc Đáo »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Liên Kết Giới Thiệu

Copyright © 2025 · Thcslytutrongst.edu.vn - Thông Tin Kiến Thức Bổ Ích