Thcslytutrongst.edu.vn - Thông Tin Kiến Thức Bổ Ích

Phương pháp phân tích đa thức thành nhân tử Phân tích đa thức thành nhân tử

Tháng 6 19, 2023 by Thcslytutrongst.edu.vn

Bạn đang xem bài viết Phương pháp phân tích đa thức thành nhân tử Phân tích đa thức thành nhân tử tại Thcslytutrongst.edu.vn bạn có thể truy cập nhanh thông tin cần thiết tại phần mục lục bài viết phía dưới.

Phương pháp phân tích đa thức thành nhân tử là tài liệu vô cùng hữu ích cung cấp cho các em học sinh lớp 8 tài liệu tham khảo, học tập, bồi dưỡng và nâng cao kiến thức môn toán theo chương trình hiện hành.

Cách phân tích đa thức thành nhân tử tổng hợp toàn bộ kiến thức về phương pháp phân tích đa thức thành nhân tử kèm theo một số bài tập có đáp án giải chi tiết kèm theo. Hi vọng qua tài liệu này các em sẽ vận dụng kiến thức của mình để làm bài tập, rèn luyện linh hoạt cách giải các dạng đề để đạt kết quả cao trong các bài kiểm tra, bài thi học sinh giỏi. Bên cạnh đó các bạn xem thêm tài liệu: bài tập về hằng đẳng thức, Bài tập các trường hợp đồng dạng của tam giác.

Mục Lục Bài Viết

  • Cách phân tích đa thức thành nhân tử
  • I. Phương pháp phân tích đa thức thành nhân tử
    • Phương pháp 1: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
    • Phương pháp 2: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
    • Phương pháp 3: Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
    • Phương pháp 4: Phân tích đa thức thành nhân tử bằng phương pháp tách hạng tử
    • Phương pháp 5: Phương pháp thêm, bớt một hạng tử.
    • Phương pháp 6: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
  • II. Bài tập phân tích đa thức thành nhân tử

Cách phân tích đa thức thành nhân tử

  • I. Phương pháp phân tích đa thức thành nhân tử
  • II. Bài tập phân tích đa thức thành nhân tử

I. Phương pháp phân tích đa thức thành nhân tử

Bản chất : Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích của những đa thức.

Ứng dụng :Tính nhanh, giải các bài toán về tìm x, giải phương trình, giải bài toán bằng cách lập phương trình, rút gọn biểu thức.

Phương pháp 1: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

Phương pháp : Giả sử cần phân tích đa thức A + B thành nhân tử, ta đi xác định trong A và B có nhân tử chung C, khi đó.

A + B = C.A1 + C.B1 = C(A1 + B1)

Bài toán 1: Phân tích thành nhân tử.

a. 20x – 5y

b) 4x2y – 8xy2+ 10x2y2

c. 5x(x – 1) – 3x(x – 1)

d. 20x2y – 12x3

e. x(x + y) – 6x – 6y

g. 8x4+ 12x2y4 – 16x3y4

Khám Phá Thêm:   Lời bài hát Có ai thương em như anh

h. 6x3– 9x2

i. 4xy2 + 8xyz

Bài toán 2 : Phân tích đa thức sau thành nhân tử.

a. 3x(x +1) – 5y(x + 1)

b. 3x3(2y – 3z) – 15x(2y – 3z)2

c. 3x(x – 6) – 2(x – 6)

d. 3x(z + 2) + 5(-x – 2)

đ. 4y(x – 1) – (1 – x)

e. 18x2(3 + x) + 3(x + 3)

g. (x – 3)3+ 3 – x

h.  14x2y – 21xy2 + 28x2y2

i. 7x(x – y) – (y – x)

k.  10x(x – y) – 8y(y – x)

Bài toán 3 : Tìm x biết.

a. 4x(x + 1) = 8(x + 1)

b. x(x – 1) – 2(1 – x) = 0

c. 2x(x – 2) – (2 – x)2= 0

d. (x – 3)3+ 3 – x = 0

e. 5x(x – 2) – (2 – x) = 0

g) 5x(x – 2000) – x + 2000 = 0

h) x2– 4x = 0

k) (1 – x)2 – 1 + x = 0

m) x + 6x2 = 0

n) (x + 1) = (x + 1)2

Phương pháp 2: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức

Phương pháp : Biến đổi đa thức bạn đầu về dạng quen thuộc của hằng đẳng thức, sau đó sử dụng hằng đẳng thức để làm xuất hiên nhân tử chung.

Bài toán 1 : Phân tích đa thức thành nhân tử.

a) 4x2– 1

b) 25x2– 0,09

c) 9x2 – frac{1}{4}

d) (x – y)2– 4

e) 9 – (x – y)2

f) (x2 + 4)2 – 16x2

Bài toán 2 : Phân tích đa thức sau thành nhân tử :

a) x4– y4

b) x2 – 3y2

c) (3x – 2y)2 – (2x – 3y)2

d) 9(x – y)2– 4(x + y)2

e) (4x2 – 4x + 1) – (x + 1)2

f) x3+ 27

g) 27x3– 0,001

h) 125x3 – 1

Bài toán 3 : Phân tích đa thức sau thành nhân tử.

a) x4+ 2x2 + 1

b) 4x2 – 12xy + 9y2

c) -x2– 2xy – y2

d) (x + y)2 – 2(x + y) + 1

e) x3– 3x2+ 3x – 1

g) x3 + 6x2 + 12x + 8

h) x3+ 1 – x2 – x

k) (x + y)3 – x3 – y3

Phương pháp 3: Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử

Bài toàn 1 : Phân tích đa thức sau thành nhân tử.

a) x2– x – y2 – y

b) x2 – 2xy + y2 – z2

c) 5x – 5y + ax – ay

d) a3– a2x – ay + xy

e) 4x2– y2+ 4x + 1

f) x3 – x + y3 – y

Bài toán 3 : Phân tích các đa thức sau thành nhân tử:

a) x2– y2 – 2x + 2y

b) 2x + 2y – x2 – xy

c) 3a2– 6ab + 3b2 – 12c2

d) x2 – 25 + y2 + 2xy

e) a2+ 2ab + b2 – ac – bc

f) x2 – 2x – 4y2 – 4y

g) x2y – x3– 9y + 9x

h) x2(x -1) + 16(1- x)

Phương pháp 4: Phân tích đa thức thành nhân tử bằng phương pháp tách hạng tử

Phương pháp:

Vận dụng thêm bớt hạng tử linh hoạt để đưa về nhóm hạng tử chung hoặc dùng hằng đẳng thức

* Ví dụ: Phân tích các đa thức sau thành nhân tử

a) x^{4}+4=x^{4}+left(4 x^{2}-4 x^{2}right)+4=x^{4}+4 x^{2}+4-4 x^{2}=left(x^{2}+2right)^{2}-4 x^{2}

=left(x^{2}+2-2 xright)left(x^{2}+2+2 xright)

b) x^{4}+1=x^{4}+2 x^{2}-2 x^{2}+1=x^{4}+2 x^{2}+1-2 x^{2}=left(x^{2}+1right)^{2}-2 x^{2}=left(x^{2}+1right)^{2}-(x sqrt{2})^{2}

=left(x^{2}+1-x sqrt{2}right)left(x^{2}+1+x sqrt{2}right)

c) 3 x^{2}+8 x+4=3 x^{2}+8 x+16-12=left(3 x^{2}-12right)+(8 x+16)=3left(x^{2}-4right)+8(x+2)

=3(x-2)(x+2)+8(x+2)=(x+2)[3(x-2)+8]=(x+2)(3 x+2)

hoặc: 3 x^{2}+8 x+4=4 x^{2}-x^{2}+8 x+4=left(4 x^{2}+8 x+4right)-x^{2}=(2 x+2)^{2}-x^{2}

=(2 x+2-x)(2 x+2+x)=(x+2)(3 x+2)

Phương pháp 5: Phương pháp thêm, bớt một hạng tử.

Ví dụ :

a) y4+ 64 = y4+ 16y2 + 64 – 16y2

= (y2 + 8)2 – (4y)2

Khám Phá Thêm:   Văn mẫu lớp 9: Kể lại bài thơ Đoàn thuyền đánh cá theo lời của em Những bài văn mẫu lớp 9 hay nhất

= (y2 + 8 – 4y)(y2 + 8 + 4y)

Bài toán 1 : phân tích đa thức thành nhân tử:

a) x4+ 16

b) x4y4 + 64

c) x4y4 + 4

d) 4x4y4+ 1

e) x4+ 1 f) x8 + x + 1

g) x8 + x7+ 1

h) x8+ 3x4 + 1

k) x4 + 4y4

Bài toán 2 : phân tích đa thức thành nhân tử :

a) a2– b2 – 2x(a – b)

b) a2 – b2 – 2x(a + b)

Bài toán 3 : Phân tích đa thức sau thành nhân tử :

a) x4y4+ 4

b) 4x4 + 1

c) 64x4 + 1

d) x4 + 64

Phương pháp 6: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Bài toán 1 : Phân tích đa thức thành nhân tử :

a) 16x4(x – y) – x + y

b) 2x3y – 2xy3– 4xy2– 2xy

c) x(y2– z2) + y(z2– x2) + z(x2 – y2)

Bài toán 2: Phân tích đa thức sau thành nhân tử :

a) 4x – 4y + x2– 2xy + y2

b) x4 – 4x3 – 8x2 + 8x

c) x3+ x2– 4x – 4

d) x4 – x2 + 2x – 1

e) x4+ x3+ x2 + 1

f) x3 – 4x2 + 4x – 1

Bài toán 3: Phân tích đa thức sau thành nhân tử :

a) x3+ x2y – xy2 – y3

b) x2y2 + 1 – x2 – y2

c) x2– y2– 4x + 4y

d) x2 – y2 – 2x – 2y

e) x2– y2– 2x – 2y

f) x3 – y3 – 3x + 3y

Bài toán 5 : Tìm x, biết.

a)x3– x2 – x + 1 = 0

b) (2x3 – 3)2 – (4x2 – 9) = 0

c) x4+ 2x3– 6x – 9 = 0

d) 2(x + 5) – x2 – 5x = 0

Bài toán 6 : Tìm giá trị nhỏ nhất của biểu thức :

a. A = x2– x + 1

b. B = 4x2+ y2 – 4x – 2y + 3

c. C = x2+ x + 1

d) D = x2 + y2 – 4(x + y) + 16

e) E = x2 + 5x + 8

g) G = 2x2 + 8x + 9

Bài toán 7 :Tìm giá trị lớn nhất của biểu thức :

a. A = -4x2– 12x

b) B = 3 – 4x – x2

c) C = x2 + 2y2+ 2xy – 2y

d) D = 2x – 2 – 3x2

e) E = 7 – x2– y2– 2(x + y)

II. Bài tập phân tích đa thức thành nhân tử

Bài 1: Phân tích các đa thức sau thành nhân tử :

a) 14x2– 21xy2+ 28x2y2 = 7x(2x – 3y2 + 4xy2)

b) 2(x + 3) – x(x + 3) = (x+3)(2-x)

c) x2+ 4x – y2+ 4 = (x + 2)2 – y2 = (x + 2 – y)(x + 2 + y)

Bài 2: Giải phương trình sau :

2(x + 3) – x(x + 3) = 0

Vậy nghiệm của phương trình là x1 = –3: x2 = 2

Bài 3: Phân tích đa thức sau thành nhân tử:

a)8x3+ 4x2– y3– y2 = (8x3– y3) + (4x2– y2)

b) x2+ 5x –6 = x2 + 6x – x – 6

= x(x + 6) – (x + 6)

= (x + 6)(x – 1)

c. a4 + 16 = a4+ 8a2 + 16 – 8a2

= (a2 + 4)2 – (a)2

= (a2 + 4 +a)( a2 + 4 – a)

Bài 4: Thực hiện phép chia đa thức sau đây bằng cách phân tích đa thức bị chia thành nhân tử:

a) (x5+ x3+ x2 + 1):(x3 + 1)

b) (x2–5x + 6):(x – 3)

Giải:

a) Vì x5+ x3+ x2 + 1

= x3(x2 + 1) + x2 + 1

= (x2 + 1)(x3 + 1)

nên (x5 + x3 + x2 + 1):(x3 + 1)

= (x2 + 1)(x3 + 1):(x3 + 1)

= (x2 + 1)

b)Vì x2– 5x + 6

= x2– 3x – 2x + 6

= x(x – 3) – 2(x – 3)

= (x – 3)(x – 2)

nên (x2– 5x + 6):(x – 3)

= (x – 3)(x – 2): (x – 3)

= (x – 2)

Bài 5 Phân tích các đa thức sau thành nhân tử:

a) x2– y2 – 2x + 2y

b) 2x + 2y – x2 – xy

Khám Phá Thêm:   So sánh quá trình hình thành hạt phấn và túi phôi Bài tập Sinh học 9

c) 3a2– 6ab + 3b2 – 12c2

d) x2 – 25 + y2 + 2xy

e) a2+ 2ab + b2 – ac – bc

f) x2 – 2x – 4y2 – 4y

g) x2y – x3– 9y + 9x

h) x2(x -1) + 16(1- x)

Bài 6:Phân tích các đa thức sau thành nhân tử:

1) 4x2 – 25 + (2x + 7)(5 – 2x)

2) 3(x+ 4) – x2 – 4x

3) 5x2 – 5y2 – 10x + 10y

4) x2 – xy + x – y

5) ax – bx – a2 + 2ab – b2

6) x2 + 4x – y2 + 4

7) x3 – x2 – x + 1

8) x4 + 6x2y + 9y2 – 1

9) x3 + x2y – 4x – 4y

10) x3 – 3x2 + 1 – 3x

11) 3x2 – 6xy + 3y2 – 12z2

12) x2 – 2x – 15

13) 2x2 + 3x – 5

14) 2x2 – 18

15) x2 – 7xy + 10y2

16) x3 – 2x2 + x – xy2

Bài tập 7: Phân tích đa thức thành nhân tử.

1. x2+ 2xy – 8y2+ 2xz + 14yz – 3z2

2. 3x2– 22xy – 4x + 8y + 7y2+ 1

3. 12x2+ 5x – 12y2+ 12y – 10xy – 3

4. 2x2– 7xy + 3y2+ 5xz – 5yz + 2z2

5. x2+ 3xy + 2y2+ 3xz + 5yz + 2z2

6. x2– 8xy + 15y2+ 2x – 4y – 3

7. x4– 13x2+ 36

8. x4+ 3x2– 2x + 3

9. x4+ 2x3+ 3x2 + 2x + 1

Bài tập 8: Phân tích đa thức thành nhân tử:

1. (a – b)3+ (b – c)3+ (c – a)3

2. (a – x)y3– (a – y)x3– (x – y)a3

3. x(y2– z2) + y(z2– x2) + z(x2 – y2)

4. (x + y + z)3– x3– y3 – z3

5. 3x5– 10x4– 8x3 – 3x2 + 10x + 8

6. 5x4+ 24x3– 15x2 – 118x + 24

7. 15x3+ 29x2– 8x – 12

8. x4– 6x3+ 7x2 + 6x – 8

9. x3+ 9x2+ 26x + 24

Bài tập 9: Phân tích đa thức thành nhân tử.

1. a(b + c)(b2– c2) + b(a + c)(a2– c2) + c(a + b)(a2 – b2)

2. ab(a – b) + bc(b – c) + ca(c – a)

3. a(b2– c2) – b(a2– c2) + c(a2 – b2)

4. (x – y)5+ (y – z)5+ (z – x)5

5. (x + y)7– x7– y7

6. ab(a + b) + bc(b + c) + ca(c + a) + abc

7. (x + y + z)5– x5– y5 – z5

8. a(b2+ c2) + b(c2+ a2) + c(a2 + b2) + 2abc

9. a3(b – c) + b3(c – a) + c3(a – b)

10. abc – (ab + bc + ac) + (a + b + c) – 1

Bài tập 10: Phân tích đa thức thành nhân tử.

1. (x2+ x)2+ 4x2 + 4x – 12

2. (x2+ 4x + 8)2+ 3x(x2 + 4x + 8) + 2x2

3. (x2+ x + 1)(x2+ x + 2) – 12

4. (x + 1)(x + 2)(x + 3)(x + 4) – 24

5. (x2+ 2x)2+ 9x2 + 18x + 20

6. x2– 4xy + 4y2– 2x + 4y – 35

7. (x + 2)(x + 4)(x + 6)(x + 8) + 16

8. (x2+ x)2+ 4(x2 + x) – 12

9. 4(x2+ 15x + 50)(x2+ 18x + 72) – 3x2

Cảm ơn bạn đã xem bài viết Phương pháp phân tích đa thức thành nhân tử Phân tích đa thức thành nhân tử tại Thcslytutrongst.edu.vn bạn có thể bình luận, xem thêm các bài viết liên quan ở phía dưới và mong rằng sẽ giúp ích cho bạn những thông tin thú vị.

 

Bài Viết Liên Quan

Hướng dẫn tắt kiểm tra chính tả trên Windows 10
Cách trình bày bài dự thi Đại sứ văn hóa đọc 2025
Phim Hit the Spot: Nội dung, diễn viên và lịch chiếu phim
Previous Post: « Bộ Sưu Tập 999+ Hình Vẽ Máy Bay Cực Chất Full 4K Top Tuyệt Vời
Next Post: Đánh Giá Trường THPT Thủy Sơn – Thủy Nguyên Hải Phòng Có Tốt Không? »

Primary Sidebar

Công Cụ Hôm Nay

  • Thời Tiết Hôm Nay
  • Tử Vi Hôm Nay
  • Lịch Âm Hôm Nay
  • Lịch Thi Đấu Bóng Đá Hôm Nay
  • Giá Vàng Hôm Nay
  • Tỷ Giá Ngoaị Tệ Hôm Nay
  • Giá Xăng Hôm Nay
  • Giá Cà Phê Hôm Nay

Công Cụ Online

  • Photoshop Online
  • Casio Online
  • Tính Phần Trăm (%) Online
  • Giải Phương Trình Online
  • Ghép Ảnh Online
  • Vẽ Tranh Online
  • Làm Nét Ảnh Online
  • Chỉnh Sửa Ảnh Online
  • Upload Ảnh Online
  • Paint Online
  • Tạo Meme Online
  • Chèn Logo Vào Ảnh Online

Liên Kết Giới Thiệu

Copyright © 2025 · Thcslytutrongst.edu.vn - Thông Tin Kiến Thức Bổ Ích